← Back

Neural Substrates

Topic spotlight
TopicWorld Wide

neural substrates

Discover seminars, jobs, and research tagged with neural substrates across World Wide.
7 curated items4 Seminars3 ePosters
Updated about 3 years ago
7 items · neural substrates
7 results
SeminarPsychology

The future of neuropsychology will be open, transdiagnostic, and FAIR - why it matters and how we can get there

Valentina Borghesani
University of Geneva
Nov 29, 2022

Cognitive neuroscience has witnessed great progress since modern neuroimaging embraced an open science framework, with the adoption of shared principles (Wilkinson et al., 2016), standards (Gorgolewski et al., 2016), and ontologies (Poldrack et al., 2011), as well as practices of meta-analysis (Yarkoni et al., 2011; Dockès et al., 2020) and data sharing (Gorgolewski et al., 2015). However, while functional neuroimaging data provide correlational maps between cognitive functions and activated brain regions, its usefulness in determining causal link between specific brain regions and given behaviors or functions is disputed (Weber et al., 2010; Siddiqiet al 2022). On the contrary, neuropsychological data enable causal inference, highlighting critical neural substrates and opening a unique window into the inner workings of the brain (Price, 2018). Unfortunately, the adoption of Open Science practices in clinical settings is hampered by several ethical, technical, economic, and political barriers, and as a result, open platforms enabling access to and sharing clinical (meta)data are scarce (e.g., Larivière et al., 2021). We are working with clinicians, neuroimagers, and software developers to develop an open source platform for the storage, sharing, synthesis and meta-analysis of human clinical data to the service of the clinical and cognitive neuroscience community so that the future of neuropsychology can be transdiagnostic, open, and FAIR. We call it neurocausal (https://neurocausal.github.io).

SeminarNeuroscience

Unchanging and changing: hardwired taste circuits and their top-down control

Hao Jin
Columbia
May 24, 2022

The taste system detects 5 major categories of ethologically relevant stimuli (sweet, bitter, umami, sour and salt) and accordingly elicits acceptance or avoidance responses. While these taste responses are innate, the taste system retains a remarkable flexibility in response to changing external and internal contexts. Taste chemicals are first recognized by dedicated taste receptor cells (TRCs) and then transmitted to the cortex via a multi-station relay. I reasoned that if I could identify taste neural substrates along this pathway, it would provide an entry to decipher how taste signals are encoded to drive innate response and modulated to facilitate adaptive response. Given the innate nature of taste responses, these neural substrates should be genetically identifiable. I therefore exploited single-cell RNA sequencing to isolate molecular markers defining taste qualities in the taste ganglion and the nucleus of the solitary tract (NST) in the brainstem, the two stations transmitting taste signals from TRCs to the brain. How taste information propagates from the ganglion to the brain is highly debated (i.e., does taste information travel in labeled-lines?). Leveraging these genetic handles, I demonstrated one-to-one correspondence between ganglion and NST neurons coding for the same taste. Importantly, inactivating one ‘line’ did not affect responses to any other taste stimuli. These results clearly showed that taste information is transmitted to the brain via labeled lines. But are these labeled lines aptly adapted to the internal state and external environment? I studied the modulation of taste signals by conflicting taste qualities in the concurrence of sweet and bitter to understand how adaptive taste responses emerge from hardwired taste circuits. Using functional imaging, anatomical tracing and circuit mapping, I found that bitter signals suppress sweet signals in the NST via top-down modulation by taste cortex and amygdala of NST taste signals. While the bitter cortical field provides direct feedback onto the NST to amplify incoming bitter signals, it exerts negative feedback via amygdala onto the incoming sweet signal in the NST. By manipulating this feedback circuit, I showed that this top-down control is functionally required for bitter evoked suppression of sweet taste. These results illustrate how the taste system uses dedicated feedback lines to finely regulate innate behavioral responses and may have implications for the context-dependent modulation of hardwired circuits in general.

ePoster

Distinct neural substrates for flexible and automatic motor sequence execution

COSYNE 2022

ePoster

Neural substrates of a symbolic action grammar in primate frontal cortex

Lucas Tian, Kedar Garzon, Daniel Hanuska, Xiao-Jing Wang, Joshua Tenenbaum, Winrich Freiwald

COSYNE 2025

ePoster

Neural substrates for visual orientation

Sabine Renninger, Ruth Diez del Corral, Jens Bierfeld, Adinda Wens, Bernardo Esteves, Ana R. Tomás, Michael B. Orger

FENS Forum 2024