Neuroimmune
neuroimmune
Remembering immunity: Neuronal representation of immune responses
Accumulating data indicate that the brain can affect immunity, as evidenced, for example, by the effects of stress, stroke, and reward system activity on the peripheral immune system. However, our understanding of this neuroimmune interaction is still limited. Importantly, we do not know how the brain evaluates and represents the state of the immune system. In this talk, I will present our latest study from our lab, designed to test the existence of immune-related information in the brain and determine its relevance to immune regulation. We hypothesized that the InsCtx, specifically the posterior InsCtx (as a primary cortical site of interoception in the brain), is especially suited to contain such a representation of the immune system. Using activity-dependent cell labeling in mice (FosTRAP), we captured neuronal ensembles in the InsCtx that were active under two different inflammatory conditions (dextran sulfate sodium [DSS]-induced colitis and zymosan-induced peritonitis). Chemogenetic reactivation of these neuronal ensembles was sufficient to broadly retrieve the inflammatory state under which these neurons were captured. Moreover, using retrograde neuronal tracing, we found an anatomical efferent pathway linking these InsCtx neurons to the inflamed peripheral sites. Taken together, we show that the brain can store and retrieve specific immune responses, extending the classical concept of immunological memory to neuronal representations of inflammatory information.
Promising Neuroimmune Targets for Alcohol Use Disorder Pathology
Neuroimmune and Glutamatergic Mechanisms of Nicotine Addiction
Neuroimmune interactions in Cardiovascular Diseases
The nervous system and the immune system share the common ability to exert gatekeeper roles at the interfaces between internal and external environment. Although interaction between these two evolutionarily highly conserved systems is long recognized, the pathophysiological mechanisms regulating their reciprocal crosstalk in cardiovascular diseases became object of investigation only more recently. In the last years, our group elucidated how the autonomic nervous system controls the splenic immunity recruited by hypertensive challenges. In my talk, I will focus on the molecular mechanisms that regulate the neuro-immune crosstalk in hypertension. I will elaborate on the mechanistic insights into this brain-spleen axis led us uncover a new molecular pathway mediating the neuroimmune interaction established by noradrenergic-mediated release in the spleen of placental growth factor (PlGF), an angiogenic growth factor potentially targetable with pharmacological approaches.
Untitled Seminar
Neuro-immune interactions in pain and host defense
The Chiu laboratory focuses on neuro-immune interactions in pain, itch, and tissue inflammation. Dr. Chiu’s research has uncovered molecular interactions between the nervous system, the immune system and microbes that modulates host defense. He has found that sensory neurons can directly detect bacterial pathogens and their toxins to produce pain. Neurons in turn release neuropeptides that modulate immune cells in host defense. These interactions occur at major tissue barriers in the body including the gut, skin and lungs. In this talk, he will discuss these major neuro-immune interactions and how understanding them could lead to novel approaches to treat pain or inflammation.
Microglia and neuroimmune interactions in the wiring of cortical circuits
Non-invasive sensory stimulation mitigates stress-induced neuroimmune responses in a sex- and frequency-specific manner
FENS Forum 2024