← Back

Neuromorphic Application

Topic spotlight
TopicWorld Wide

neuromorphic application

Discover seminars, jobs, and research tagged with neuromorphic application across World Wide.
2 curated items2 Seminars
Updated over 3 years ago
2 items · neuromorphic application
2 results
SeminarNeuroscienceRecording

Heterogeneity and non-random connectivity in reservoir computing

Abigail Morrison
Jülich Research Centre & RWTH Aachen University, Germany
May 31, 2022

Reservoir computing is a promising framework to study cortical computation, as it is based on continuous, online processing and the requirements and operating principles are compatible with cortical circuit dynamics. However, the framework has issues that limit its scope as a generic model for cortical processing. The most obvious of these is that, in traditional models, learning is restricted to the output projections and takes place in a fully supervised manner. If such an output layer is interpreted at face value as downstream computation, this is biologically questionable. If it is interpreted merely as a demonstration that the network can accurately represent the information, this immediately raises the question of what would be biologically plausible mechanisms for transmitting the information represented by a reservoir and incorporating it in downstream computations. Another major issue is that we have as yet only modest insight into how the structural and dynamical features of a network influence its computational capacity, which is necessary not only for gaining an understanding of those features in biological brains, but also for exploiting reservoir computing as a neuromorphic application. In this talk, I will first demonstrate a method for quantifying the representational capacity of reservoirs without training them on tasks. Based on this technique, which allows systematic comparison of systems, I then present our recent work towards understanding the roles of heterogeneity and connectivity patterns in enhancing both the computational properties of a network and its ability to reliably transmit to downstream networks. Finally, I will give a brief taster of our current efforts to apply the reservoir computing framework to magnetic systems as an approach to neuromorphic computing.

SeminarNeuroscienceRecording

Fast and deep neuromorphic learning with time-to-first-spike coding

Julian Goeltz
Universität Bern
Aug 31, 2020

Engineered pattern-recognition systems strive for short time-to-solution and low energy-to-solution characteristics. This represents one of the main driving forces behind the development of neuromorphic devices. For both them and their biological archetypes, this corresponds to using as few spikes as early as possible. The concept of few and early spikes is used as the founding principle in the time-to-first-spike coding scheme. Within this framework, we have developed a spike-timing-based learning algorithm, which we used to train neuronal networks on the mixed-signal neuromorphic platform BrainScaleS-2. We derive, from first principles, error-backpropagation-based learning in networks of leaky integrate-and-fire (LIF) neurons relying only on spike times, for specific configurations of neuronal and synaptic time constants. We explicitly examine applicability to neuromorphic substrates by studying the effects of reduced weight precision and range, as well as of parameter noise. We demonstrate the feasibility of our approach on continuous and discrete data spaces, both in software simulations and on BrainScaleS-2. This narrows the gap between previous models of first-spike-time learning and biological neuronal dynamics and paves the way for fast and energy-efficient neuromorphic applications.