Neuronal Classes
neuronal classes
What transcriptomics tells us about retinal development, disease and evolution
Classification of neurons, long viewed as a fairly boring enterprise, has emerged as a major bottleneck in analysis of neural circuits. High throughput single cell RNA-seq has provided a new way to improve the situation. We initially applied this method to mouse retina, showing that its five neuronal classes (photoreceptors, three groups of interneurons, and retinal ganglion cells) can be divided into 130 discrete types. We then applied the method to other species including human, macaque, zebrafish and chick. With the atlases in hand, we are now using them to address questions about how retinal cell types diversify, how they differ in their responses to injury and disease, and the extent to which cell classes and types are conserved among vertebrates.
Making spinal sensory interneurons from stem cells for regenerative therapies
Dr. Gupta is carrying out his post doctoral studies in the Buter Laboratory in UCLA. He is applying his his knowledge of embryology to stem cells for developing regenerative therapies to treat spinal cord injuries. In this talk, he will discuss how understanding the logic for spinal cord development led us to derive diverse sensory neuronal classes from embryonic stem cells. The spinal sensory neurons enableus to perceive our environment through modalities that are lost in spinal injury patients. These ESC derived senory neurons can help regain sensation in spina cord injury patients through regenerative therapies.
Two distinct inhibitory neuronal classes govern acquisition and recall of spinal sensorimotor learning
FENS Forum 2024