Neuronal Loss
neuronal loss
Synaptic health in Parkinson's Disease
Parkinson's disease (PD) is the second most common neurodegenerative disorder, affecting 1% of over 65's; there is currently no effective treatment. Dopaminergic neuronal loss is hallmark in PD and yet despite decades of intensive research there is still no known therapeutic which will completely halt the disorder. As a result, identification of interventive therapies to reverse or prevent PD are essential. Using genetically faithful models (induced pluripotent stem cells and knock-in mice) of familial late onset PD (LRRK2 G2019S and GBA N370S) we have contributed to the literature that neuronal dysfunction precedes degeneration. Specifically, using whole cell patch clamp electrophysiology, biochemical, behavioural and molecular biological techniques, we have begun to investigate the fundamental processes that make neurons specialised i.e., synaptic function and neurotransmission. We illustrate those alterations to spontaneous neurotransmitter release, neuronal firing, and short-term plasticity as well as Ca2+ and energy dyshomeostasis, are some of the earliest observable pathological dysfunctions and are likely precursors to late-stage degeneration. These pathologies represent targets which can be manipulated to address causation, rather than the symptoms of the PD, and represent a marker that, if measurable in patients, could form the basis of early PD detection and intervention.
The pathophysiology of prodromal Parkinson’s disease
Studying the pathophysiology of late stage Parkinson’s disease (PD) – after the patients have experienced severe neuronal loss – has helped develop various symptomatic treatments for PD (e.g., deep brain stimulation). However, it has been of limited use in developing neuroprotective disease-modifying therapies (DMTs), because DMTs require interventions at much earlier stages of PD when vulnerable neurons are still intact. Because PD patients exhibit various non-motor prodromal symptoms (ie, symptoms that predate diagnosis), understanding the pathophysiology underlying these symptom could lead to earlier diagnosis and intervention. In my talk, I will present a recently elucidated example of how PD pathologies alter the channel biophysics of intact vagal motoneurons (known to be selectively vulnerable in PD) to drive dysautonomia that is reminiscent of prodromal PD. I will discuss how elucidating the pathophysiology of prodromal symptoms can lead to earlier diagnosis through the development of physiological biomarkers for PD.
The cellular phase of Alzheimer’s Disease: from genes to cells
The amyloid cascade hypothesis for Alzheimer disease ((Hardy and Selkoe, 2002; Hardy and Higgins, 1992; Selkoe, 1991), updated in (Karran et al., 2011) provides a linear model for the pathogenesis of AD with Aβ accumulation upstream and Tau pathology, inflammation, synaptic dysfunction, neuronal loss and dementia downstream, all interlinked, initiated and driven by Aβ42 peptides or oligomers. The genetic mutations causing familial Alzheimer disease seem to support this model. The nagging problem remains however that the postulated causal, and especially the ’driving’ role of abnormal Aβ aggregation or Aβ oligomer formation could not be convincingly demonstrated until now. Indeed, many questions (e.g. what causes Aβ toxicity, what is the relation between Aβ and Tau pathology, what causes neuronal death, why is amyloid deposition not correlated with dementia etc…) were already raised when the amyloid hypothesis was conceived 25 years ago. These questions remain in essence unanswered. It seems that the old paradigm is not tenable: the amyloid cascade is too linear, too neurocentric, and does not take into account the long time lag between the biochemical phase i.e. the appearance of amyloid plaques and neuronal tangles and the ultimate clinical phase, i.e. the manifestation of dementia. The pathways linking these two phases must be complex and tortuous. We have called this the cellular phase of AD (De Strooper and Karran, 2016) to suggest that a long period of action and reaction involving neurons, neuronal circuitry but also microglia, astroglia, oligodendrocytes, and the vasculature underlies the disease. In fact it is this long disease process that should be studied in the coming years. While microglia are part of this process, they should not be considered as the only component of the cellular phase. We expect that further clinical investigations and novel tools will allow to diagnose the effects of the cellular changes in the brain and provide clinical signs for this so called preclinical or prodromal AD. Furthermore the better understanding of this phase will lead to completely novel drug targets and treatments and will lead to an era where patients will receive an appropriate therapy according to their clinical stage. In this view anti-amyloid therapy is probably only effective and useful in the very early stage of the disease and AD does no longer equal to dementia. We will discuss in our talk how single cell technology and transplantation of human iPS cells into mouse brain allow to start to map in a systematic way the cellular phase of Alzheimer’s Disease.
Neuroprotective strategies with neurotrophic factors against selective neuronal loss
FENS Forum 2024