Topic spotlight
TopicWorld Wide

nodes

Discover seminars, jobs, and research tagged with nodes across World Wide.
21 curated items19 Seminars2 ePosters
Updated 7 months ago
21 items · nodes
21 results
SeminarNeuroscience

Neural Signal Propagation Atlas of C. elegans

Andrew Leifer
Princeton University, US
May 18, 2025

In the age of connectomics, it is increasingly important to understand how the nodes and edges of a brain's anatomical network, or "connectome," gives rise to neural signaling and neural function. I will present the first comprehensive brain-wide cell-resolved causal measurements of how neurons signal to one another in response to stimulation in the nematode C. elegans. I will compare this signal propagation atlas to the worm's known connectome to address fundamental questions of structure and function in the brain.

SeminarNeuroscience

Neural mechanisms governing the learning and execution of avoidance behavior

Mario Penzo
National Institute of Mental Health, Bethesda, USA
Jun 18, 2024

The nervous system orchestrates adaptive behaviors by intricately coordinating responses to internal cues and environmental stimuli. This involves integrating sensory input, managing competing motivational states, and drawing on past experiences to anticipate future outcomes. While traditional models attribute this complexity to interactions between the mesocorticolimbic system and hypothalamic centers, the specific nodes of integration have remained elusive. Recent research, including our own, sheds light on the midline thalamus's overlooked role in this process. We propose that the midline thalamus integrates internal states with memory and emotional signals to guide adaptive behaviors. Our investigations into midline thalamic neuronal circuits have provided crucial insights into the neural mechanisms behind flexibility and adaptability. Understanding these processes is essential for deciphering human behavior and conditions marked by impaired motivation and emotional processing. Our research aims to contribute to this understanding, paving the way for targeted interventions and therapies to address such impairments.

SeminarNeuroscienceRecording

Virtual Brain Twins for Brain Medicine and Epilepsy

Viktor Jirsa
Aix Marseille Université - Inserm
Nov 7, 2023

Over the past decade we have demonstrated that the fusion of subject-specific structural information of the human brain with mathematical dynamic models allows building biologically realistic brain network models, which have a predictive value, beyond the explanatory power of each approach independently. The network nodes hold neural population models, which are derived using mean field techniques from statistical physics expressing ensemble activity via collective variables. Our hybrid approach fuses data-driven with forward-modeling-based techniques and has been successfully applied to explain healthy brain function and clinical translation including aging, stroke and epilepsy. Here we illustrate the workflow along the example of epilepsy: we reconstruct personalized connectivity matrices of human epileptic patients using Diffusion Tensor weighted Imaging (DTI). Subsets of brain regions generating seizures in patients with refractory partial epilepsy are referred to as the epileptogenic zone (EZ). During a seizure, paroxysmal activity is not restricted to the EZ, but may recruit other healthy brain regions and propagate activity through large brain networks. The identification of the EZ is crucial for the success of neurosurgery and presents one of the historically difficult questions in clinical neuroscience. The application of latest techniques in Bayesian inference and model inversion, in particular Hamiltonian Monte Carlo, allows the estimation of the EZ, including estimates of confidence and diagnostics of performance of the inference. The example of epilepsy nicely underwrites the predictive value of personalized large-scale brain network models. The workflow of end-to-end modeling is an integral part of the European neuroinformatics platform EBRAINS and enables neuroscientists worldwide to build and estimate personalized virtual brains.

SeminarNeuroscienceRecording

CD8+ T cell activation in cancer comprises an initial activation phase in lymph nodes followed by effector differentiation within the tumor

Nataliya Prokhnevska
MSKCC
Mar 22, 2023
SeminarNeuroscienceRecording

A Game Theoretical Framework for Quantifying​ Causes in Neural Networks

Kayson Fakhar​
ICNS Hamburg
Jul 5, 2022

Which nodes in a brain network causally influence one another, and how do such interactions utilize the underlying structural connectivity? One of the fundamental goals of neuroscience is to pinpoint such causal relations. Conventionally, these relationships are established by manipulating a node while tracking changes in another node. A causal role is then assigned to the first node if this intervention led to a significant change in the state of the tracked node. In this presentation, I use a series of intuitive thought experiments to demonstrate the methodological shortcomings of the current ‘causation via manipulation’ framework. Namely, a node might causally influence another node, but how much and through which mechanistic interactions? Therefore, establishing a causal relationship, however reliable, does not provide the proper causal understanding of the system, because there often exists a wide range of causal influences that require to be adequately decomposed. To do so, I introduce a game-theoretical framework called Multi-perturbation Shapley value Analysis (MSA). Then, I present our work in which we employed MSA on an Echo State Network (ESN), quantified how much its nodes were influencing each other, and compared these measures with the underlying synaptic strength. We found that: 1. Even though the network itself was sparse, every node could causally influence other nodes. In this case, a mere elucidation of causal relationships did not provide any useful information. 2. Additionally, the full knowledge of the structural connectome did not provide a complete causal picture of the system either, since nodes frequently influenced each other indirectly, that is, via other intermediate nodes. Our results show that just elucidating causal contributions in complex networks such as the brain is not sufficient to draw mechanistic conclusions. Moreover, quantifying causal interactions requires a systematic and extensive manipulation framework. The framework put forward here benefits from employing neural network models, and in turn, provides explainability for them.

SeminarPhysics of LifeRecording

Making a Mesh of Things: Using Network Models to Understand the Mechanics of Heterogeneous Tissues

Jonathan Michel
Rochester Institute of Technology
Apr 3, 2022

Networks of stiff biopolymers are an omnipresent structural motif in cells and tissues. A prominent modeling framework for describing biopolymer network mechanics is rigidity percolation theory. This theory describes model networks as nodes joined by randomly placed, springlike bonds. Increasing the amount of bonds in a network results in an abrupt, dramatic increase in elastic moduli above a certain threshold – an example of a mechanical phase transition. While homogeneous networks are well studied, many tissues are made of disparate components and exhibit spatial fluctuations in the concentrations of their constituents. In this talk, I will first discuss recent work in which we explained the structural basis of the shear mechanics of healthy and chemically degraded cartilage by coupling a rigidity percolation framework with a background gel. Our model takes into account collagen concentration, as well as the concentration of peptidoglycans in the surrounding polyelectrolyte gel, to produce a structureproperty relationship that describes the shear mechanics of both sound and diseased cartilage. I will next discuss the introduction of structural correlation in constructing networks, such that sparse and dense patches emerge. I find moderate correlation allows a network to become rigid with fewer bonds, while this benefit is partly erased by excessive correlation. We explain this phenomenon through analysis of the spatial fluctuations in strained networks’ displacement fields. Finally, I will address our work’s implications for non-invasive diagnosis of pathology, as well as rational design of prostheses and novel soft materials.

SeminarNeuroscience

A transdiagnostic data-driven study of children’s behaviour and the functional connectome

Jonathan Jones
Universiy of Cambridge, MRC CBU
Nov 23, 2021

Behavioural difficulties are seen as hallmarks of many neurodevelopmental conditions. Differences in functional brain organisation have been observed in these conditions, but little is known about how they are related to a child’s profile of behavioural difficulties. We investigated whether behavioural difficulties are associated with how the brain is functionally organised in an intentionally heterogeneous and transdiagnostic sample of 957 children aged 5-15. We used consensus community detection to derive data-driven profiles of behavioural difficulties and constructed functional connectomes from a subset of 238 children with resting-state functional Magnetic Resonance Imaging (fMRI) data. We identified three distinct profiles of behaviour that were characterised by principal difficulties with hot executive function, cool executive function, and learning. Global organisation of the functional connectome did not differ between the groups, but multivariate patterns of connectivity at the level of Intrinsic Connectivity Networks (ICNs), nodes, and hubs significantly predicted group membership in held-out data. Fronto-parietal connector hubs were under-connected in all groups relative to a comparison sample, and children with hot vs cool executive function difficulties were distinguished by connectivity in ICNs associated with cognitive control, emotion processing, and social cognition. This demonstrates both general and specific neurodevelopmental risk factors in the functional connectome. (https://www.medrxiv.org/content/10.1101/2021.09.15.21262637v1)

SeminarNeuroscienceRecording

Transdiagnostic approaches to understanding neurodevelopment

Duncan Astle
MRC Cognition and Brain Sciences Unit, University of Cambridge
Nov 8, 2021

Macroscopic brain organisation emerges early in life, even prenatally, and continues to develop through adolescence and into early adulthood. The emergence and continual refinement of large-scale brain networks, connecting neuronal populations across anatomical distance, allows for increasing functional integration and specialisation. This process is thought crucial for the emergence of complex cognitive processes. But how and why is this process so diverse? We used structural neuroimaging collected from a large diverse cohort, to explore how different features of macroscopic brain organisation are associated with diverse cognitive trajectories. We used diffusion-weighted imaging (DWI) to construct whole-brain white-matter connectomes. A simulated attack on each child's connectome revealed that some brain networks were strongly organized around highly connected 'hubs'. The more children's brains were critically dependent on hubs, the better their cognitive skills. Conversely, having poorly integrated hubs was a very strong risk factor for cognitive and learning difficulties across the sample. We subsequently developed a computational framework, using generative network modelling (GNM), to model the emergence of this kind of connectome organisation. Relatively subtle changes within the wiring rules of this computational framework give rise to differential developmental trajectories, because of small biases in the preferential wiring properties of different nodes within the network. Finally, we were able to use this GNM to implicate the molecular and cellular processes that govern these different growth patterns.

SeminarNeuroscienceRecording

Spike-based embeddings for multi-relational graph data

Dominik Dold
European Space Research and Technology Centre
Nov 1, 2021

A rich data representation that finds wide application in industry and research is the so-called knowledge graph - a graph-based structure where entities are depicted as nodes and relations between them as edges. Complex systems like molecules, social networks and industrial factory systems can be described using the common language of knowledge graphs, allowing the usage of graph embedding algorithms to make context-aware predictions in these information-packed environments.

SeminarNeuroscience

Themes and Variations: Circuit mechanisms of behavioral evolution

Vanessa Ruta
The Rockefeller University, New York, USA
Sep 28, 2021

Animals exhibit extraordinary variation in their behavior, yet little is known about the neural mechanisms that generate this diversity. My lab has been taking advantage of the rapid diversification of male courtship behaviors in Drosophila to glean insight into how evolution shapes the nervous system to generate species-specific behaviors. By translating neurogenetic tools from D. melanogaster to closely related Drosophila species, we have begun to directly compare the homologous neural circuits and pinpoint sites of adaptive change. Across species, P1 neurons serve as a conserved node in regulating male courtship: these neurons are selectively activated by the sensory cues indicative of an appropriate mate and their activation triggers enduring courtship displays. We have been examining how different sensory pathways converge onto P1 neurons to regulate a male’s state of arousal, honing his pursuit of a prospective partner. Moreover, by performing cross-species comparison of these circuits, we have begun to gain insight into how reweighting of sensory inputs to P1 neurons underlies species-specific mate recognition. Our results suggest how variation at flexible nodes within the nervous system can serve as a substrate for behavioral evolution, shedding light on the types of changes that are possible and preferable within brain circuits.

SeminarNeuroscience

Contrasting neuronal circuits driving reactive and cognitive fear

Mario Penzo
NIMH
Jun 27, 2021

The last decade in the field of neuroscience has been marked by intense debate on the meaning of the term fear. Whereas some have argued that fear (as well as other emotions) relies on cognitive capacities that are unique to humans, others view it as a negative state constructed from essential building blocks. This latter definition posits that fear states are associated with varying readouts that one could consider to be parallel processes or serial events tied to a specific hierarchy. Within this framework, innate defensive behaviors are considered to be common displays of fear states that lie under the control of hard-wired brain circuits. As a general rule, these defensive behaviors can be classified as either reactive or cognitive based on a thread imminence continuum. However, while evidence of the neuronal circuits that lead to these divergent behavioral strategies has accrued over the last decades, most literature has considered these responses in isolation. As a result, important misconceptions have arisen regarding how fear circuits are distributed in the brain and the contribution of specific nodes within these circuits to defensive behaviors. To mitigate the status quo, I will conduct a systematic comparison of brain circuits driving the expression of freezing and active avoidance behavior, which I will use as well-studied proxies of reactive and cognitive fear, respectively. In addition, I propose that by integrating associative information with interoceptive and exteroceptive signals the central nucleus of the amygdala plays a crucial role in biasing the selection of defensive behaviors.

SeminarNeuroscience

Bridging brain and cognition: A multilayer network analysis of brain structural covariance and general intelligence in a developmental sample of struggling learners

Ivan Simpson-Kent
University of Cambridge, MRC CBU
Jun 1, 2021

Network analytic methods that are ubiquitous in other areas, such as systems neuroscience, have recently been used to test network theories in psychology, including intelligence research. The network or mutualism theory of intelligence proposes that the statistical associations among cognitive abilities (e.g. specific abilities such as vocabulary or memory) stem from causal relations among them throughout development. In this study, we used network models (specifically LASSO) of cognitive abilities and brain structural covariance (grey and white matter) to simultaneously model brain-behavior relationships essential for general intelligence in a large (behavioral, N=805; cortical volume, N=246; fractional anisotropy, N=165), developmental (ages 5-18) cohort of struggling learners (CALM). We found that mostly positive, small partial correlations pervade both our cognitive and neural networks. Moreover, calculating node centrality (absolute strength and bridge strength) and using two separate community detection algorithms (Walktrap and Clique Percolation), we found convergent evidence that subsets of both cognitive and neural nodes play an intermediary role between brain and behavior. We discuss implications and possible avenues for future studies.

SeminarNeuroscience

Precision and Temporal Stability of Directionality Inferences from Group Iterative Multiple Model Estimation (GIMME) Brain Network Models

Alexander Weigard
University of Michigan
Mar 29, 2021

The Group Iterative Multiple Model Estimation (GIMME) framework has emerged as a promising method for characterizing connections between brain regions in functional neuroimaging data. Two of the most appealing features of this framework are its ability to estimate the directionality of connections between network nodes and its ability to determine whether those connections apply to everyone in a sample (group-level) or just to one person (individual-level). However, there are outstanding questions about the validity and stability of these estimates, including: 1) how recovery of connection directionality is affected by features of data sets such as scan length and autoregressive effects, which may be strong in some imaging modalities (resting state fMRI, fNIRS) but weaker in others (task fMRI); and 2) whether inferences about directionality at the group and individual levels are stable across time. This talk will provide an overview of the GIMME framework and describe relevant results from a large-scale simulation study that assesses directionality recovery under various conditions and a separate project that investigates the temporal stability of GIMME’s inferences in the Human Connectome Project data set. Analyses from these projects demonstrate that estimates of directionality are most precise when autoregressive and cross-lagged relations in the data are relatively strong, and that inferences about the directionality of group-level connections, specifically, appear to be stable across time. Implications of these findings for the interpretation of directional connectivity estimates in different types of neuroimaging data will be discussed.

SeminarNeuroscience

Leveraging olfaction to understand how the brain and the body generate social behavior

Lisa Stowers
Scripps research institute
Nov 29, 2020

Courtship behavior is an innate model for many types of brain computations including sensory detection, learning and memory, and internal state modulation. Despite the robustness of the behavior, we have little understanding of the underlying neural circuits and mechanisms. The Stowers’ lab is leveraging the ability of specialized olfactory cues, pheromones, to specifically activate and therefore identify and study courtship circuits in the mouse. We are interested in identifying general circuit principles (specific brain nodes and information flow) that are common to all individuals, in order to additionally study how experience, gender, age, and internal state modulate and personalize behavior. We are solving two parallel sensory to motor courtship circuits, that promote social vocal calling and scent marking, to study information processing of behavior as a complete unit instead of restricting focus to a single brain region. We expect comparing and contrasting the coding logic of two courtship motor behaviors will begin to shed light on general principles of how the brain senses context, weighs experience and responds to internal state to ultimately decide appropriate action.

SeminarNeuroscienceRecording

Theme and variations: circuit mechanisms of behavioural evolution

Vanessa Ruta
Rockefeller University
Jun 30, 2020

Animals exhibit extraordinary variation in their behaviour, yet little is known about the neural mechanisms that generate this diversity. My lab has been taking advantage of the rapid diversification of male courtship behaviours in Drosophila to gain insight into how evolution shapes the nervous system to generate species-specific behaviours. By translating neurogenetic tools from D. melanogaster to closely related Drosophila species, we have begun to directly compare the homologous neural circuits and pinpoint sites of adaptive change. Across species, P1 interneurons serve as a conserved and key node in regulating male courtship: these neurons are selectively activated by the sensory cues carried by an appropriate mate and their activation triggers enduring courtship displays. We have been examining how different sensory pathways converge onto P1 neurons to regulate a male’s state of arousal, honing his pursuit of a prospective partner. Moreover, by performing cross-species comparison of these circuits, we have begun to gain insight into how reweighting of sensory inputs to P1 neurons underlies species-specific mate recognition. Our results suggest how variation at flexible nodes within the nervous system can serve as a substrate for behavioural evolution, shedding light on the types of changes that are possible and preferable within brain circuits.

SeminarNeuroscienceRecording

The butterfly strikes back: neurons doing 'network' computation

Upinder Singh Bhalla
National Centre for Biological Sciences of the Tata Institute of Fundamental Research.
May 28, 2020

We live in the age of the network: Internet social neural ecosystems. This has become one of the main metaphors for how we think about complex systems. This view also dominates the account of brain function. The role of neuronsdescribed by Cajal as the "butterflies of the soul" has become diminished to leaky integrate-and-fire point objects in many models of neural network computation. It is perhaps not surprising that networkexplanations of neural phenomena use neurons as elementary particles andascribe all their wonderful capabilities to their interactions in a network. In the network view the Connectome defines the brain and the butterflies have no role. In this talk I'd like to reclaim some key computations from the networkand return them to their rightful place at the cellular and subcellular level. I'll start with a provocative look at potential computational capacity ofdifferent kinds of brain computation: network vs. subcellular. I'll then consider different levels of pattern and sequence computationwith a glimpse of the efficiency of the subcellular solutions. Finally I propose that there is a suggestive mapping between entire nodesof deep networks to individual neurons. This in my view is how we can walk around with 1.3 litres and 20 watts of installed computational capacity still doing far more than giant AI server farms.

ePoster

Dynamical systems analysis reveals a novel hypothalamic encoding of state in nodes controlling social behavior

COSYNE 2022

ePoster

Subcortical nodes mediodorsal thalamus and ventral pallidum contribute to the default mode network regulation

Yilei Zhao, Tobias Kirschenhofer, Michael Harvey, Gregor Rainer

FENS Forum 2024