Origami
origami
Towards open meta-research in neuroimaging
When meta-research (research on research) makes an observation or points out a problem (such as a flaw in methodology), the project should be repeated later to determine whether the problem remains. For this we need meta-research that is reproducible and updatable, or living meta-research. In this talk, we introduce the concept of living meta-research, examine prequels to this idea, and point towards standards and technologies that could assist researchers in doing living meta-research. We introduce technologies like natural language processing, which can help with automation of meta-research, which in turn will make the research easier to reproduce/update. Further, we showcase our open-source litmining ecosystem, which includes pubget (for downloading full-text journal articles), labelbuddy (for manually extracting information), and pubextract (for automatically extracting information). With these tools, you can simplify the tedious data collection and information extraction steps in meta-research, and then focus on analyzing the text. We will then describe some living meta-research projects to illustrate the use of these tools. For example, we’ll show how we used GPT along with our tools to extract information about study participants. Essentially, this talk will introduce you to the concept of meta-research, some tools for doing meta-research, and some examples. Particularly, we want you to take away the fact that there are many interesting open questions in meta-research, and you can easily learn the tools to answer them. Check out our tools at https://litmining.github.io/
Multistable structures - from deployable structures to robots
Multistable structures can reversibly change between multiple stable configurations when a sufficient energetic input is provided. While originally the field focused on understanding what governs the snapping, more recently it has been shown that these systems also provide a powerful platform to design a wide range of smart structures. In this talk, I will first show that pressure-deployable origami structures characterized by two stable configurations provide opportunities for a new generation of large-scale inflatable structures that lock in place after deployment and provide a robust enclosure through their rigid faces. Then, I will demonstrate that the propagation of transition waves in a bistable one-dimensional linkage can be exploited as a robust mechanism to realize structures that can be quickly deployed. Finally, while in the first two examples multistability is harnessed to realize deployable architectures, I will demonstrate that bistable building blocks can also be exploited to design crawling and jumping robots. Unlike previously proposed robots that require complex input control of multiple actuators, a simple, slow input signal suffices to make our system move, as all features required for locomotion are embedded into the architecture of the building blocks.
Endless forms most beautiful: how to program materials using geometry, topology and singularities
The dream of programmable matter is to create materials whose physical properties (shape, moduli, response to perturbations, etc.) can be changed on the fly. For many years, my group has been thinking about how to program flat sheets that fold up into three dimensional shapes, most recently by exploiting the principles of origami design. Unfortunately, a combinatorial explosion of folding pathways makes robust folding particularly challenging. In this talk, I will discuss how this pluripotency arises from the topology of the configuration space. This suggests a broader understanding of a larger class of materials spanning from folding forms to spring networks to mechanical structures that perform computational logic.