Phase Locking
phase locking
Manipulating single-unit theta phase-locking with PhaSER: An open-source tool for real-time phase estimation and manipulation
Zoe has developed an open-source tool PhaSER, which allows her to perform real-time oscillatory phase estimation and apply optogenetic manipulations at precise phases of hippocampal theta during high-density electrophysiological recordings in head-fixed mice while they navigate a virtual environment. The precise timing of single-unit spiking relative to network-wide oscillations (i.e., phase locking) has long been thought to maintain excitatory-inhibitory homeostasis and coordinate cognitive processes, but due to intense experimental demands, the causal influence of this phenomenon has never been determined. Thus, we developed PhaSER (Phase-locked Stimulation to Endogenous Rhythms), a tool which allows the user to explore the temporal relationship between single-unit spiking and ongoing oscillatory activity.
Human Single-Neuron recordings reveal neuronal mechanisms of Working Memory
Working memory (WM) is a fundamental human cognitive capacity that allows us to maintain and manipulate information stored for a short period of time in an active form. Thanks to a unique opportunity to record activity of neurons in humans during epilepsy monitoring we could test neuronal mechanisms of this cognitive capacity. We showed that firing rate of image selective neurons in Medial Temporal Lobe persists through maintenance periods of working memory task. This activity was behaviorally relevant and formed attractors in its state-space. Furthermore, we showed that firing rate of those neurons phase lock to ongoing slow-frequency oscillations. The properties of phase locking are dependent on memory content and load. During high memory loads, the phase of the oscillatory activity to which neurons phase lock provides information about memory content not available in the firing rate of the neurons.