Physical Principles
physical principles
On being the right size: Is the search for underlying physical principles a wild-goose chase?
When was the last time you ran into a giant? Chances are never. Almost 100 years ago, JBS Haldane posed an outwardly simple yet complex question – what is the most optimal size (for a biological system)? The living world around us contains a huge diversity of organisms, each with its own characteristic size. Even the size of subcellular organelles is tightly controlled. In absence of physical rulers, how do cells and organisms truly “know” how large is large enough? What are the mechanisms in place to enforce size control? Many of these questions have motivated generations of scientists to look for physical principles underlying size control in biological systems. In the next edition of Emory's Theory and Modeling of Living Systems (TMLS) workshop series, our panel of speakers will take a close look at these questions, across the entire scale - from the molecular, all the way to the ecosystem.
Motility control in biological microswimmers
It is often assumed that biological swimmers conform faithfully to certain stereotypes assigned to them by physicists and mathematicians, when the reality is in fact much more complicated. In this talk we will use a combination of theory, experiments, and robotics, to understand the physical and evolutionary basis of motility control in a number of distinguished organisms. These organisms differ markedly in terms of their size, shape, and arrangement of locomotor appendages, but are united in their use of cilia - the ultimate shape-shifting organelle - to achieve self-propulsion and navigation.