Physiological Experiments
physiological experiments
Can a single neuron solve MNIST? Neural computation of machine learning tasks emerges from the interaction of dendritic properties
Physiological experiments have highlighted how the dendrites of biological neurons can nonlinearly process distributed synaptic inputs. However, it is unclear how qualitative aspects of a dendritic tree, such as its branched morphology, its repetition of presynaptic inputs, voltage-gated ion channels, electrical properties and complex synapses, determine neural computation beyond this apparent nonlinearity. While it has been speculated that the dendritic tree of a neuron can be seen as a multi-layer neural network and it has been shown that such an architecture could be computationally strong, we do not know if that computational strength is preserved under these qualitative biological constraints. Here we simulate multi-layer neural network models of dendritic computation with and without these constraints. We find that dendritic model performance on interesting machine learning tasks is not hurt by most of these constraints and may synergistically benefit from all of them combined. Our results suggest that single real dendritic trees may be able to learn a surprisingly broad range of tasks through the emergent capabilities afforded by their properties.
Retinal responses to natural inputs
The research in my lab focuses on sensory signal processing, particularly in cases where sensory systems perform at or near the limits imposed by physics. Photon counting in the visual system is a beautiful example. At its peak sensitivity, the performance of the visual system is limited largely by the division of light into discrete photons. This observation has several implications for phototransduction and signal processing in the retina: rod photoreceptors must transduce single photon absorptions with high fidelity, single photon signals in photoreceptors, which are only 0.03 – 0.1 mV, must be reliably transmitted to second-order cells in the retina, and absorption of a single photon by a single rod must produce a noticeable change in the pattern of action potentials sent from the eye to the brain. My approach is to combine quantitative physiological experiments and theory to understand photon counting in terms of basic biophysical mechanisms. Fortunately there is more to visual perception than counting photons. The visual system is very adept at operating over a wide range of light intensities (about 12 orders of magnitude). Over most of this range, vision is mediated by cone photoreceptors. Thus adaptation is paramount to cone vision. Again one would like to understand quantitatively how the biophysical mechanisms involved in phototransduction, synaptic transmission, and neural coding contribute to adaptation.
Integrators in short- and long-term memory
The accumulation and storage of information in memory is a fundamental computation underlying animal behavior. In many brain regions and task paradigms, ranging from motor control to navigation to decision-making, such accumulation is accomplished through neural integrator circuits that enable external inputs to move a system’s population-wide patterns of neural activity along a continuous attractor. In the first portion of the talk, I will discuss our efforts to dissect the circuit mechanisms underlying a neural integrator from a rich array of anatomical, physiological, and perturbation experiments. In the second portion of the talk, I will show how the accumulation and storage of information in long-term memory may also be described by attractor dynamics, but now within the space of synaptic weights rather than neural activity. Altogether, this work suggests a conceptual unification of seemingly distinct short- and long-term memory processes.
NMC4 Short Talk: Systematic exploration of neuron type differences in standard plasticity protocols employing a novel pathway based plasticity rule
Spike Timing Dependent Plasticity (STDP) is argued to modulate synaptic strength depending on the timing of pre- and postsynaptic spikes. Physiological experiments identified a variety of temporal kernels: Hebbian, anti-Hebbian and symmetrical LTP/LTD. In this work we present a novel plasticity model, the Voltage-Dependent Pathway Model (VDP), which is able to replicate those distinct kernel types and intermediate versions with varying LTP/LTD ratios and symmetry features. In addition, unlike previous models it retains these characteristics for different neuron models, which allows for comparison of plasticity in different neuron types. The plastic updates depend on the relative strength and activation of separately modeled LTP and LTD pathways, which are modulated by glutamate release and postsynaptic voltage. We used the 15 neuron type parametrizations in the GLIF5 model presented by Teeter et al. (2018) in combination with the VDP to simulate a range of standard plasticity protocols including standard STDP experiments, frequency dependency experiments and low frequency stimulation protocols. Slight variation in kernel stability and frequency effects can be identified between the neuron types, suggesting that the neuron type may have an effect on the effective learning rule. This plasticity model builds a middle ground between biophysical and phenomenological models allowing not just for the combination with more complex and biophysical neuron models, but is also computationally efficient so can be used in network simulations. Therefore it offers the possibility to explore the functional role of the different kernel types and electrophysiological differences in heterogeneous networks in future work.
Low dimensional models and electrophysiological experiments to study neural dynamics in songbirds
Birdsong emerges when a set of highly interconnected brain areas manage to generate a complex output. The similarities between birdsong production and human speech have positioned songbirds as unique animal models for studying learning and production of this complex motor skill. In this work, we developed a low dimensional model for a neural network in which the variables were the average activities of different neural populations within the nuclei of the song system. This neural network is active during production, perception and learning of birdsong. We performed electrophysiological experiments to record neural activity from one of these nuclei and found that the low dimensional model could reproduce the neural dynamics observed during the experiments. Also, this model could reproduce the respiratory motor patterns used to generate song. We showed that sparse activity in one of the neural nuclei could drive a more complex activity downstream in the neural network. This interdisciplinary work shows how low dimensional neural models can be a valuable tool for studying the emergence of complex motor tasks