Prevention
prevention
Why age-related macular degeneration is a mathematically tractable disease
Among all prevalent diseases with a central neurodegeneration, AMD can be considered the most promising in terms of prevention and early intervention, due to several factors surrounding the neural geometry of the foveal singularity. • Steep gradients of cell density, deployed in a radially symmetric fashion, can be modeled with a difference of Gaussian curves. • These steep gradients give rise to huge, spatially aligned biologic effects, summarized as the Center of Cone Resilience, Surround of Rod Vulnerability. • Widely used clinical imaging technology provides cellular and subcellular level information. • Data are now available at all timelines: clinical, lifespan, evolutionary • Snapshots are available from tissues (histology, analytic chemistry, gene expression) • A viable biogenesis model exists for drusen, the largest population-level intraocular risk factor for progression. • The biogenesis model shares molecular commonality with atherosclerotic cardiovascular disease, for which there has been decades of public health success. • Animal and cell model systems are emerging to test these ideas.
From the guts to the brain through adaptive immunity in the prevention of Alzheimer’ disease
Dr. Pasinetti is the Saunders Family Chair and Professor of Neurology at Icahn School of medicine at Mount Sinai, New York. His studies allowed him to develop novel therapeutic approaches through investigation of preventable risk factors including mood disorders in the promotion of resilience against neurodegenerative disorder. In his presentation Dr. Pasinetti will discuss novel concepts about the gut-brain axis in mechanisms associated to peripheral adaptive immunity as therapeutic targets to mitigate the onset and the progression of Alzheimer’s disease and other form of dementia.
Programmed axon death: from animal models into human disease
Programmed axon death is a widespread and completely preventable mechanism in injury and disease. Mouse and Drosophila studies define a molecular pathway involving activation of SARM1 NA Dase and its prevention by NAD synthesising enzyme NMNAT2 . Loss of axonal NMNAT2 causes its substrate, NMN , to accumulate and activate SARM1 , driving loss of NAD and changes in ATP , ROS and calcium. Animal models caused by genetic mutation, toxins, viruses or metabolic defects can be alleviated by blocking programmed axon death, for example models of CMT1B , chemotherapy-induced peripheral neuropathy (CIPN), rabies and diabetic peripheral neuropathy (DPN). The perinatal lethality of NMNAT2 null mice is completely rescued, restoring a normal, healthy lifespan. Animal models lack the genetic and environmental diversity present in human populations and this is problematic for modelling gene-environment combinations, for example in CIPN and DPN , and identifying rare, pathogenic mutations. Instead, by testing human gene variants in WGS datasets for loss- and gain-of-function, we identified enrichment of rare SARM1 gain-of-function variants in sporadic ALS , despite previous negative findings in SOD1 transgenic mice. We have shown in mice that heterozygous SARM1 loss-of-function is protective from a range of axonal stresses and that naturally-occurring SARM1 loss-of-function alleles are present in human populations. This enables new approaches to identify disorders where blocking SARM1 may be therapeutically useful, and the existence of two dominant negative human variants in healthy adults is some of the best evidence available that drugs blocking SARM1 are likely to be safe. Further loss- and gain-of-function variants in SARM1 and NMNAT2 are being identified and used to extend and strengthen the evidence of association with neurological disorders. We aim to identify diseases, and specific patients, in whom SARM1 -blocking drugs are most likely to be effective.
Post-traumatic headache
Concussion (mild traumatic brain injury) affects approximately 50 million people annually. Headache is the most common symptom after concussion and persists in up to 50% of those affected for at least one-year. The biological underpinnings of and the efficacy and tolerability of treatments for post-traumatic headache has historically received little attention. While treatment in clinical practice is mostly directly at the underlying phenotype of the headache, persistent post-traumatic headache is considered to be less responsive to treatments used to treat migraine or tension-type headache. Over the past several years, significant pre-clinical research has begun to elucidate the mechanism(s) involved in the development of post-traumatic headache, and a concerted effort to evaluate the efficacy of selected treatments for persistent post-traumatic headache has begun. This presentation will review the epidemiology, pathophysiology, and emerging data on the prevention and treatment of post-traumatic headache.
The Role of Cerebrovascular Pathology in Aging and Neurodegenerative Disease Populations
Late-life cognitive impairment and dementia are heterogeneous and multifactorial conditions driven by a combination of genetic, vascular, and lifestyle-related factors. More than 75% of patients with dementia have evidence of cerebrovascular pathology at autopsy. Cerebrovascular disease lesions can be detected on structural MRI and used as biomarkers to determine the extent of cerebrovascular pathology. These biomarkers are associated with cognitive difficulties and increase the risk of dementia for the same level of neurodegenerative pathology. Given that some of the risk factors for cerebrovascular disease are potentially modifiable, identifying the role of cerebrovascular pathology in aging and neurodegenerative disease populations opens a window for prevention of cognitive decline and dementia.
Multimodal imaging in Dementia with Lewy bodies
Dementia with Lewy bodies (DLB) is a synucleinopathy but more than half of patients with DLB also have varying degrees of tau and amyloid-β co-pathology. Identifying and tracking the pathologic heterogeneity of DLB with multi-modal biomarkers is critical for the design of clinical trials that target each pathology early in the disease at a time when prevention or delaying the transition to dementia is possible. Furthermore, longitudinal evaluation of multi-modal biomarkers contributes to our understanding of the type and extent of the pathologic progression and serves to characterize the temporal emergence of the associated phenotypic expression. This talk will focus on the utility of multi-modal imaging in DLB.
Common elements: An innovative methodology for identifying effective interventions in early childhood education
Evidence-based education programmes, like many clinical interventions, are multi-faceted and can be expensive to implement. In this talk I will describe an alternative: distilling the common elements across many evidence-based programmes. Published programme manuals are selected through systematic review, then extensively coded and cross-referenced. Finally, the common elements that emerge are shared with practitioners as part of a ‘library’ of practices (rather than a holistic programme manual). Although the common elements methodology has been used in the prevention and intervention sciences, this project reflects the first attempt at applying this approach to early childhood education. I will describe the common elements methods and preliminary findings from our Nuffield-funded project, in collaboration with the Early Intervention Foundation. I will discuss the challenges and opportunities we have encountered, alongside our strategies for sharing evidence with practitioners in a digestible way.
Improving the identification of cardiometabolic risk in early psychosis
People with chronic schizophrenia die on average 10-15 years sooner than the general population, mostly due to physical comorbidity. While sociodemographic, chronic lifestyle and iatrogenic factors are important contributors to this comorbidity, a growing body of research is beginning to suggest that early signs of cardiometabolic dysfunction may be present from the onset of psychosis in some young adults, and may even be detectable before the onset of psychosis. Given that primary prevention is the best means to prevent the onset of more chronic and severe cardiometabolic phenotypes such as CVD, there is clear need to be able to identify young adults with psychosis who are most at risk of future adverse cardiometabolic outcomes, such that the most intensive interventions can be directed in an informed way to attenuate the risk or even prevent those adverse outcomes from occurring.In this talk, Ben will first outline some recent advances in our understanding of the association between cardiometabolic and schizophrenia spectrum disorders. He will then introduce the field of cardiometabolic risk prediction, and highlight how existing tools developed for older general population adults are unlikely to be suitable for young people with psychosis. Finally, he will discuss the current state of play and the future of the Psychosis Metabolic Risk Calculator (PsyMetRiC), a novel clinically useful cardiometabolic risk prediction algorithm tailored for young people with psychosis, which has been developed and externally validated using data from three psychosis early intervention services in the UK.
Worms use their brain to regulate their behavior and physiology to deal with the lethal threat of hydrogen peroxide
In this talk I will discuss our recent findings that sensory signals from the brain adjust the physiology and behavior of the nematode C. elegans, enabling this animal to deal with the lethal threat of hydrogen peroxide. Hydrogen peroxide (H2O2) is the most common chemical threat in the microbial battlefield. Prevention and repair of the damage that hydrogen peroxide inflicts on macromolecules are critical for health and survival. In the first part of the talk, I will discuss our findings that C. elegans represses their own H2O2 defenses in response to sensory perception of Escherichia coli, the nematode’s food source, because E. coli can deplete H2O2 from the local environment and thereby protect the nematodes. Thus, the E. coli self-defense mechanisms create a public good, an environment safe from the threat of H2O2, that benefits C. elegans. In the second part of the talk, I will discuss how the modulation of C. elegans’ sensory perception by the interplay of hydrogen peroxide and bacteria adjusts the nematode’s behavior to improve the nematode’s chances of finding a niche that provides both food and protection from hydrogen peroxide.
Neural stem cells as biomarkers of cognitive aging and dementia
Adult hippocampal neurogenesis is implicated in memory formation and mood regulation. The Thuret lab investigates environmental and molecular mechanisms controlling the production of these adult-born neurons and how they impact mental health. We study neurogenesis in healthy ageing as well as in the context of diseases such as Alzheimer’s and depression. By approaching neurogenesis in health and disease, the strategy is two folds: (i) Validating the neurogenic process as a target for prevention and pharmacological interventions. (ii) Developing neurogenesis as a biomarker of disease prediction and progression. In this talk, I will focus on presenting some recent human studies demonstrating how hippocampal neural stem cells fate can be used as biomarkers of cognitive aging and dementia.
Unpacking Nature from Nurture: Understanding how Family Processes Affect Child and Adolescent Mental Health
Mental Health problems among youth constitutes an area of significant social, educational, clinical, policy and public health concern. Understanding processes and mechanisms that underlie the development of mental health problems during childhood and adolescence requires theoretical and methodological integration across multiple scientific domains, including developmental science, neuroscience, genetics, education and prevention science. The primary focus of this presentation is to examine the relative role of genetic and family environmental influences on children’s emotional and behavioural development. Specifically, a complementary array of genetically sensitive and longitudinal research designs will be employed to examine the role of early environmental adversity (e.g. inter-parental conflict, negative parenting practices) relative to inherited factors in accounting for individual differences in children’s symptoms of psychopathology (e.g. depression, aggression, ADHD ). Examples of recent applications of this research to the development of evidence-based intervention programmes aimed at reducing psychopathology in the context of high-risk family settings will also be presented.
Harnessing Mindset in 21st Century Healthcare
Mindsets are core assumptions about the nature and workings of things in the world that orient us to a particular set of attributions, expectations, and goals. Our study of mindsets is, in part, inspired by research on the placebo effect, a robust demonstration of the ability of mindsets, conscious or subconscious, to elicit physiological changes in the body. This talk will explore the role of mindsets in three stages of chronic disease progression: genetic predisposition, behavioral prevention, and clinical treatment. I will discuss the mechanisms through which mindsets influence health as well as the myriad ways that mindsets can be more effectively leveraged to motivate healthy behaviors and improve 21st century healthcare.
European University for Brain and Technology Virtual Opening
The European University for Brain and Technology, NeurotechEU, is opening its doors on the 16th of December. From health & healthcare to learning & education, Neuroscience has a key role in addressing some of the most pressing challenges that we face in Europe today. Whether the challenge is the translation of fundamental research to advance the state of the art in prevention, diagnosis or treatment of brain disorders or explaining the complex interactions between the brain, individuals and their environments to design novel practices in cities, schools, hospitals, or companies, brain research is already providing solutions for society at large. There has never been a branch of study that is as inter- and multi-disciplinary as Neuroscience. From the humanities, social sciences and law to natural sciences, engineering and mathematics all traditional disciplines in modern universities have an interest in brain and behaviour as a subject matter. Neuroscience has a great promise to become an applied science, to provide brain-centred or brain-inspired solutions that could benefit the society and kindle a new economy in Europe. The European University of Brain and Technology (NeurotechEU) aims to be the backbone of this new vision by bringing together eight leading universities, 250+ partner research institutions, companies, societal stakeholders, cities, and non-governmental organizations to shape education and training for all segments of society and in all regions of Europe. We will educate students across all levels (bachelor’s, master’s, doctoral as well as life-long learners) and train the next generation multidisciplinary scientists, scholars and graduates, provide them direct access to cutting-edge infrastructure for fundamental, translational and applied research to help Europe address this unmet challenge.
Population studies and ageing brains, in a time of COVID
This presentation will include a brief resume of research in older populations led from Cambridge that have informed current clinical understanding and policy regarding services and prevention for and of dementia. These population studies have more recently been ‘re-purposed’ with enthusiasm from participants into a trial platform, and this also has enabled ongoing follow-up by telephone during the COVID pandemic. Although there are no formal outputs from these latter developments general impressions will be shared.
Targeting the Endocannabinoid System for Management of Chemotherapy, HIV and Antiretroviral-Induced Neuropathic Pain
Chemotherapeutic drugs (used for treating cancer), HIV infection and antiretroviral therapy (ART) can independently cause difficult-to-manage painful neuropathy. Paclitaxel, a chemotherapeutic drug, for example is associated with high incidence of peripheral neuropathy, around 71% of the patients of which 27% of these develop neuropathic pain. Use of cannabis or phytocannabinoids has been reported to improve pain measures in patients with neuropathic pain, including painful HIV-associated sensory neuropathy and cancer pain. Phytocannabinoids and endocannabinoids, such as anandamide and 2-arachidonoylglycerol (2-AG), produce their effects via cannabinoid (CB) receptors, which are present both in the periphery and central nervous system. Endocannabinoids are synthesized in an “on demand” fashion and are degraded by various enzymes such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL). Various studies, including those from our group, suggest that there are changes in gene and protein expression of endocannabinoid molecules during chemotherapy-induced neuropathic pain (CINP), HIV and antiretroviral-induced neuropathic pain. Analysis of endocannabinoid molecule expression in the brain, spinal cord and paw skin using LC-MS/MS show that there is a specific deficiency of the endocannabinoids 2-AG and/or anandamide in the periphery during CINP. Various drugs including endocannabinoids, cannabidiol, inhibitors of FAAH and MGL, CB receptor agonists, desipramine and coadministered indomethacin plus minocycline have been found to either prevent the development and/or attenuate established CINP, HIV and antiretroviral-induced neuropathic pain in a CB receptor-dependent manner. The results available suggest that targeting the endocannabinoid system for prevention and treatment of CINP, HIV-associated neuropathic pain and antiretroviral-induced neuropathic pain is a plausible therapeutic option.
Cannabidiol prevention of cognitive deficits in a rat model for Alzheimer’s disease is associated with neuroinflammation
FENS Forum 2024
Prediction and prevention of compulsive behaviors by closed-loop optogenetic recruitment of striatal interneurons
FENS Forum 2024
Study on the efficacy and mechanism of ginsenoside in the prevention of cerebral ischemic stroke
FENS Forum 2024