Principal Cells
principal cells
Reconstructing inhibitory circuits in a damaged brain
Inhibitory interneurons govern the sparse activation of principal cells that permits appropriate behaviors, but they among the most vulnerable to brain damage. Our recent work has demonstrated important roles for inhibitory neurons in disorders of brain development, injury and epilepsy. These studies have motivated our ongoing efforts to understand how these cells operate at the synaptic, circuit and behavioral levels and in designing new technologies targeting specific populations of interneurons for therapy. I will discuss our recent efforts examining the role of interneurons in traumatic brain injury and in designing cell transplantation strategies - based on the generation of new inhibitory interneurons - that enable precise manipulation of inhibitory circuits in the injured brain. I will also discuss our ongoing efforts using monosynaptic virus tracing and whole-brain clearing methods to generate brain-wide maps of inhibitory circuits in the rodent brain. By comprehensively mapping the wiring of individual cell types on a global scale, we have uncovered a fundamental strategy to sustain and optimize inhibition following traumatic brain injury that involves spatial reorganization of local and long-range inputs to inhibitory neurons. These recent findings suggest that brain damage, even when focally restricted, likely has a far broader affect on brain-wide neural function than previously appreciated.
Cellular mechanisms behind stimulus evoked quenching of variability
A wealth of experimental studies show that the trial-to-trial variability of neuronal activity is quenched during stimulus evoked responses. This fact has helped ground a popular view that the variability of spiking activity can be decomposed into two components. The first is due to irregular spike timing conditioned on the firing rate of a neuron (i.e. a Poisson process), and the second is the trial-to-trial variability of the firing rate itself. Quenching of the variability of the overall response is assumed to be a reflection of a suppression of firing rate variability. Network models have explained this phenomenon through a variety of circuit mechanisms. However, in all cases, from the vantage of a neuron embedded within the network, quenching of its response variability is inherited from its synaptic input. We analyze in vivo whole cell recordings from principal cells in layer (L) 2/3 of mouse visual cortex. While the variability of the membrane potential is quenched upon stimulation, the variability of excitatory and inhibitory currents afferent to the neuron are amplified. This discord complicates the simple inheritance assumption that underpins network models of neuronal variability. We propose and validate an alternative (yet not mutually exclusive) mechanism for the quenching of neuronal variability. We show how an increase in synaptic conductance in the evoked state shunts the transfer of current to the membrane potential, formally decoupling changes in their trial-to-trial variability. The ubiquity of conductance based neuronal transfer combined with the simplicity of our model, provides an appealing framework. In particular, it shows how the dependence of cellular properties upon neuronal state is a critical, yet often ignored, factor. Further, our mechanism does not require a decomposition of variability into spiking and firing rate components, thereby challenging a long held view of neuronal activity.
Self-organisation in interneuron circuits
Inhibitory interneurons come in different classes and form intricate circuits. While our knowledge of these circuits has advanced substantially over the last decades, it is not fully understood how the structure of these circuits relates to their function. I will present some of our recent attempts to “understand” the structure of interneuron circuits by means of computational modeling. Surprisingly (at least for us), we found that prominent features of inhibitory circuitry can be accounted for by an optimisation for excitation-inhibition (E/I) balance. In particular, we find that such an optimisation generates networks that resemble mouse V1 in terms of the structure of synaptic efficacies between principal cells and parvalbumin-positive interneurons. Moreover, an optimisation for E/I balance across neuronal compartments promotes a functional diversification of interneurons into two classes that resemble parvalbumin and somatostatin-positive interneurons. Time permitting, I may briefly touch on recent work in which we link E/I balance to prediction error coding in V1.
Cellular/circuit dysfunction in a model of Dravet syndrome - a severe childhood epilepsy
Dravet syndrome is a severe childhood epilepsy due to heterozygous loss-of-function mutation of the gene SCN1A, which encodes the type 1 neuronal voltage gated sodium (Na+) channel alpha-subunit Nav1.1. Prior studies in mouse models of Dravet syndrome (Scn1a+/- mice) at early developmental time points indicate that, in cerebral cortex, Nav1.1 is predominantly expressed in GABAergic interneurons (INs) and, in particular, in parvalbumin-positive fast-spiking basket cells (PV-INs). This has led to a model of Dravet syndrome pathogenesis whereby Nav1.1 mutation leads to preferential IN dysfunction, decreased synaptic inhibition, hyperexcitability, and epilepsy. We found that, at later developmental time points, the intrinsic excitability of PV-INs has essentially normalized, via compensatory reorganization of axonal Na+ channels. Instead, we found persistent and seemingly paradoxical dysfunction of putative disinhibitory INs expressing vasoactive intestinal peptide (VIP-INs). In vivo two-photon calcium imaging in neocortex during temperature-induced seizures in Scn1a+/- mice showed that mean activity of both putative principal cells and PV-INs was higher in Scn1a+/- relative to wild-type controls during quiet wakefulness at baseline and at elevated core body temperature. However, wild-type PV-INs showed a progressive synchronization in response to temperature elevation that was absent in PV-INs from Scn1a+/- mice immediately prior to seizure onset. We suggest that impaired PV-IN synchronization, perhaps via persistent axonal dysfunction, may contribute to the transition to the ictal state during temperature induced seizures in Dravet syndrome.