Topic spotlight
TopicWorld Wide

pupil

Discover seminars, jobs, and research tagged with pupil across World Wide.
33 curated items16 Seminars15 ePosters2 Positions
Updated 2 days ago
33 items · pupil
33 results
Position

Anne Urai

Leiden University
Leiden, The Netherlands
Dec 5, 2025

Full listing: https://www.medewerkers.universiteitleiden.nl/vacatures/2022/kwartaal-2/22-25911465postdoc-in-cognitive-and-computational-neuroscience The way that neural computations give rise to behavior is shaped by ever-fluctuating internal states. These states (such as arousal, fear, stress, hunger, motivation, engagement, or drowsiness) are characterized by spontaneous neural dynamics that arise independent of task demands. Across subfields of neuroscience, internal states have been quantified using a variety of measurements and markers (based on physiology, brain activity or behavioral motifs), but these are rarely explicitly compared or integrated. It is thus unclear if such different state markers quantify the same, or even related underlying processes. Instead, the simplified concept of internal states likely obscures a multi-dimensional set of biologically relevant processes, which may affect behavior in distinct ways. In this project, we will take an integrative approach to quantify the structure and dimensionality of internal states and their effects on decision-making behavior. We will apply several state-of-the-art methods to extract different markers of internal states from facial video data, pupillometry, and high-density neural recordings. We will then quantify the unique and shared dimensionality of internal states, and their relevance for predicting choice behavior. By combining existing, publicly available datasets in mice with additional experiments in humans, we will directly test the cross-species relevance of our findings. Lastly, we will investigate how internal states change over a range of timescales: from sub-second fluctuations relevant for choice behavior to the very slow changes that take place with aging. This project is a collaboration between the Cognitive, Computational and Systems Neuroscience lab led by Dr. Anne Urai (daily supervisor) and the Temporal Attention Lab led by Prof. Sander Nieuwenhuis. We are based in Leiden University’s Cognitive Psychology Unit, and we participate in the Leiden Institute for Brain and Cognition (LIBC), an interfaculty center for interdisciplinary research on brain and cognition ( https://www.libc-leiden.nl ). There are further options for collaborating with the International Brain Laboratory ( https://www.internationalbrainlab.com ). Leiden is a small, friendly town near the beach, with great public transport connections to larger cities nearby. The Netherlands has excellent support for families. The working language at the university is English, and you can comfortably get by with only minimal knowledge of Dutch. Our team is small, and we value a collegial and supportive environment. Open science is a core value in our work, and we actively pursue ways to make academia a better place. We support postdocs in developing their own ideas and research line, and we offer opportunities to gain small-scale teaching and grant writing experience. More information on our groups’ research interests, scientific vision and working environment can be found at https://anneurai.net, https://anne-urai.github.io/lab_wiki/Vision.html and https://www.temporalattentionlab.com If you like asking hard questions, making things work, and pursuing creative ideas in a collaborative team, then this position may be for you. Please do not be discouraged from applying if your current CV is not a ‘perfect fit’. This job could suit someone from a range of different career backgrounds, and there is great scope for the right applicant to develop the role and make it their own.

Position

Anne Urai

Leiden University, The Netherlands
Leiden, The Netherlands
Dec 5, 2025

The way that neural computations give rise to behavior is shaped by ever-fluctuating internal states. These states (such as arousal, fear, stress, hunger, motivation, engagement, or drowsiness) are characterized by spontaneous neural dynamics that arise independent of task demands. Across subfields of neuroscience, internal states have been quantified using a variety of measurements and markers (based on physiology, brain activity or behavioral motifs), but these are rarely explicitly compared or integrated. It is thus unclear if such different state markers quantify the same, or even related underlying processes. Instead, the simplified concept of internal states likely obscures a multi-dimensional set of biologically relevant processes, which may affect behavior in distinct ways. In this project, we will take an integrative approach to quantify the structure and dimensionality of internal states and their effects on decision-making behavior. We will apply several state-of-the-art methods to extract different markers of internal states from facial video data, pupillometry, and high-density neural recordings. We will then quantify the unique and shared dimensionality of internal states, and their relevance for predicting choice behavior. By combining existing, publicly available datasets in mice with additional experiments in humans, we will directly test the cross-species relevance of our findings. Lastly, we will investigate how internal states change over a range of timescales: from sub-second fluctuations relevant for choice behavior to the very slow changes that take place with aging. This project is a collaboration between the Cognitive, Computational and Systems Neuroscience lab led by Dr. Anne Urai (daily supervisor) and the Temporal Attention Lab led by Prof. Sander Nieuwenhuis. We are based in Leiden University’s Cognitive Psychology Unit, and we participate in the Leiden Institute for Brain and Cognition (LIBC), an interfaculty center for interdisciplinary research on brain and cognition ( https://www.libc-leiden.nl ). There are further options for collaborating with the International Brain Laboratory ( https://www.internationalbrainlab.com ). Leiden is a small, friendly town near the beach, with great public transport connections to larger cities nearby. The Netherlands has excellent support for families. The working language at the university is English, and you can comfortably get by with only minimal knowledge of Dutch. Our team is small, and we value a collegial and supportive environment. Open science is a core value in our work, and we actively pursue ways to make academia a better place. We support postdocs in developing their own ideas and research line, and we offer opportunities to gain small-scale teaching and grant writing experience. More information on our groups’ research interests, scientific vision and working environment can be found at https://anneurai.net, https://anne-urai.github.io/lab_wiki/Vision.html and https://www.temporalattentionlab.com If you like asking hard questions, making things work, and pursuing creative ideas in a collaborative team, then this position may be for you. Please do not be discouraged from applying if your current CV is not a ‘perfect fit’. This job could suit someone from a range of different career backgrounds, and there is great scope for the right applicant to develop the role and make it their own. See the full listing and apply at: https://www.medewerkers.universiteitleiden.nl/vacatures/2022/kwartaal-2/22-25911465postdoc-in-cognitive-and-computational-neuroscience

SeminarNeuroscience

Neural mechanisms of optimal performance

Luca Mazzucato
University of Oregon
May 22, 2025

When we attend a demanding task, our performance is poor at low arousal (when drowsy) or high arousal (when anxious), but we achieve optimal performance at intermediate arousal. This celebrated Yerkes-Dodson inverted-U law relating performance and arousal is colloquially referred to as being "in the zone." In this talk, I will elucidate the behavioral and neural mechanisms linking arousal and performance under the Yerkes-Dodson law in a mouse model. During decision-making tasks, mice express an array of discrete strategies, whereby the optimal strategy occurs at intermediate arousal, measured by pupil, consistent with the inverted-U law. Population recordings from the auditory cortex (A1) further revealed that sound encoding is optimal at intermediate arousal. To explain the computational principle underlying this inverted-U law, we modeled the A1 circuit as a spiking network with excitatory/inhibitory clusters, based on the observed functional clusters in A1. Arousal induced a transition from a multi-attractor (low arousal) to a single attractor phase (high arousal), and performance is optimized at the transition point. The model also predicts stimulus- and arousal-induced modulations of neural variability, which we confirmed in the data. Our theory suggests that a single unifying dynamical principle, phase transitions in metastable dynamics, underlies both the inverted-U law of optimal performance and state-dependent modulations of neural variability.

SeminarPsychology

Neural makers of lapses in attention during sustained ‘real-world’ task performance

Emily Cunningham
University of Stirling
Feb 11, 2025

Lapses in attention are ubiquitous and, unfortunately, the cause of many tragic accidents. One potential solution may be to develop assistance systems which can use objective, physiological signals to monitor attention levels and predict a lapse in attention before it occurs. As it stands, it is unclear which physiological signals are the most reliable markers of inattention, and even less is known about how reliably they will work in a more naturalistic setting. My project aims to address these questions across two experiments: a lab-based experiment and a more ‘real-world’ experiment. In this talk I will present the findings from my lab experiment, in which we combined EEG and pupillometry to detect markers of inattention during two computerised sustained attention tasks. I will then present the methods for my second, more ‘naturalistic’ experiment in which we use the same methods (EEG and pupillometry) to examine whether these markers can still be extracted from noisier data.

SeminarNeuroscienceRecording

A sense without sensors: how non-temporal stimulus features influence the perception and the neural representation of time

Domenica Bueti
SISSA, Trieste (Italy)
Apr 18, 2023

Any sensory experience of the world, from the touch of a caress to the smile on our friend’s face, is embedded in time and it is often associated with the perception of the flow of it. The perception of time is therefore a peculiar sensory experience built without dedicated sensors. How the perception of time and the content of a sensory experience interact to give rise to this unique percept is unclear. A few empirical evidences show the existence of this interaction, for example the speed of a moving object or the number of items displayed on a computer screen can bias the perceived duration of those objects. However, to what extent the coding of time is embedded within the coding of the stimulus itself, is sustained by the activity of the same or distinct neural populations and subserved by similar or distinct neural mechanisms is far from clear. Addressing these puzzles represents a way to gain insight on the mechanism(s) through which the brain represents the passage of time. In my talk I will present behavioral and neuroimaging studies to show how concurrent changes of visual stimulus duration, speed, visual contrast and numerosity, shape and modulate brain’s and pupil’s responses and, in case of numerosity and time, influence the topographic organization of these features along the cortical visual hierarchy.

SeminarNeuroscience

Binocular combination of light

Daniel H. Baker
University of York (USA)
Jul 13, 2022

The brain combines signals across the eyes. This process is well-characterized for the perceptual anatomical pathway through V1 that primarily codes contrast, where interocular normalization ensures that responses are approximately equal for monocular and binocular stimulation. But we have much less understanding of how luminance is combined binocularly, both in the cortex and in subcortical structures that govern pupil diameter. Here I will describe the results of experiments using a novel combined EEG and pupillometry paradigm to simultaneously index binocular combination of luminance flicker in parallel pathways. The results show evidence of a more linear process than for spatial contrast, that may reflect different operational constraints in distinct anatomical pathways.

SeminarNeuroscience

Putting non-image forming responses to light into practice

Raymond P. Najjar
National University of Singapore (Singapore)
Jun 29, 2022

Beyond vision, light triggers a variety of non-image forming responses. Amongst these is the pupillary light reflex, commonly used by ophthalmologists to gauge the function of the optic nerve head. In my talk, I will share some of our latest work on optimizing the use of the pupillary light reflex to detect functional loss in ocular diseases in clinics.

SeminarNeuroscience

From Computation to Large-scale Neural Circuitry in Human Belief Updating

Tobias Donner
University Medical Center Hamburg-Eppendorf
Jun 28, 2022

Many decisions under uncertainty entail dynamic belief updating: multiple pieces of evidence informing about the state of the environment are accumulated across time to infer the environmental state, and choose a corresponding action. Traditionally, this process has been conceptualized as a linear and perfect (i.e., without loss) integration of sensory information along purely feedforward sensory-motor pathways. Yet, natural environments can undergo hidden changes in their state, which requires a non-linear accumulation of decision evidence that strikes a tradeoff between stability and flexibility in response to change. How this adaptive computation is implemented in the brain has remained unknown. In this talk, I will present an approach that my laboratory has developed to identify evidence accumulation signatures in human behavior and neural population activity (measured with magnetoencephalography, MEG), across a large number of cortical areas. Applying this approach to data recorded during visual evidence accumulation tasks with change-points, we find that behavior and neural activity in frontal and parietal regions involved in motor planning exhibit hallmarks signatures of adaptive evidence accumulation. The same signatures of adaptive behavior and neural activity emerge naturally from simulations of a biophysically detailed model of a recurrent cortical microcircuit. The MEG data further show that decision dynamics in parietal and frontal cortex are mirrored by a selective modulation of the state of early visual cortex. This state modulation is (i) specifically expressed in the alpha frequency-band, (ii) consistent with feedback of evolving belief states from frontal cortex, (iii) dependent on the environmental volatility, and (iv) amplified by pupil-linked arousal responses during evidence accumulation. Together, our findings link normative decision computations to recurrent cortical circuit dynamics and highlight the adaptive nature of decision-related long-range feedback processing in the brain.

SeminarNeuroscience

How do ipRGCs work? Evidence from the pupil light reflex

Pablo Alejandro Barrionuevo
National Scientific and Technical Research Council/CONICET (Argentina)
May 24, 2022

Since the discovery of the intrinsically photosensitive retinal ganglion cells (ipRGCs) – just two decades ago – substantial work has been carried out trying to understand their functioning. In this seminar, I’ll focus on pupillometry studies that have provided key clues about ipRGC behavior. Specifically, the interaction between the intrinsic response, rods, and cones will be discussed.

SeminarNeuroscienceRecording

A draft connectome for ganglion cell types of the mouse retina

David Berson
Brown University
May 15, 2022

The visual system of the brain is highly parallel in its architecture. This is clearly evident in the outputs of the retina, which arise from neurons called ganglion cells. Work in our lab has shown that mammalian retinas contain more than a dozen distinct types of ganglion cells. Each type appears to filter the retinal image in a unique way and to relay this processed signal to a specific set of targets in the brain. My students and I are working to understand the meaning of this parallel organization through electrophysiological and anatomical studies. We record from light-responsive ganglion cells in vitro using the whole-cell patch method. This allows us to correlate directly the visual response properties, intrinsic electrical behavior, synaptic pharmacology, dendritic morphology and axonal projections of single neurons. Other methods used in the lab include neuroanatomical tracing techniques, single-unit recording and immunohistochemistry. We seek to specify the total number of ganglion cell types, the distinguishing characteristics of each type, and the intraretinal mechanisms (structural, electrical, and synaptic) that shape their stimulus selectivities. Recent work in the lab has identified a bizarre new ganglion cell type that is also a photoreceptor, capable of responding to light even when it is synaptically uncoupled from conventional (rod and cone) photoreceptors. These ganglion cells appear to play a key role in resetting the biological clock. It is just this sort of link, between a specific cell type and a well-defined behavioral or perceptual function, that we seek to establish for the full range of ganglion cell types. My research concerns the structural and functional organization of retinal ganglion cells, the output cells of the retina whose axons make up the optic nerve. Ganglion cells exhibit great diversity both in their morphology and in their responses to light stimuli. On this basis, they are divisible into a large number of types (>15). Each ganglion-cell type appears to send its outputs to a specific set of central visual nuclei. This suggests that ganglion cell heterogeneity has evolved to provide each visual center in the brain with pre-processed representations of the visual scene tailored to its specific functional requirements. Though the outline of this story has been appreciated for some time, it has received little systematic exploration. My laboratory is addressing in parallel three sets of related questions: 1) How many types of ganglion cells are there in a typical mammalian retina and what are their structural and functional characteristics? 2) What combination of synaptic networks and intrinsic membrane properties are responsible for the characteristic light responses of individual types? 3) What do the functional specializations of individual classes contribute to perceptual function or to visually mediated behavior? To pursue these questions, we label retinal ganglion cells by retrograde transport from the brain; analyze in vitro their light responses, intrinsic membrane properties and synaptic pharmacology using the whole-cell patch clamp method; and reveal their morphology with intracellular dyes. Recently, we have discovered a novel ganglion cell in rat retina that is intrinsically photosensitive. These ganglion cells exhibit robust light responses even when all influences from classical photoreceptors (rods and cones) are blocked, either by applying pharmacological agents or by dissociating the ganglion cell from the retina. These photosensitive ganglion cells seem likely to serve as photoreceptors for the photic synchronization of circadian rhythms, the mechanism that allows us to overcome jet lag. They project to the circadian pacemaker of the brain, the suprachiasmatic nucleus of the hypothalamus. Their temporal kinetics, threshold, dynamic range, and spectral tuning all match known properties of the synchronization or "entrainment" mechanism. These photosensitive ganglion cells innervate various other brain targets, such as the midbrain pupillary control center, and apparently contribute to a host of behavioral responses to ambient lighting conditions. These findings help to explain why circadian and pupillary light responses persist in mammals, including humans, with profound disruption of rod and cone function. Ongoing experiments are designed to elucidate the phototransduction mechanism, including the identity of the photopigment and the nature of downstream signaling pathways. In other studies, we seek to provide a more detailed characterization of the photic responsiveness and both morphological and functional evidence concerning possible interactions with conventional rod- and cone-driven retinal circuits. These studies are of potential value in understanding and designing appropriate therapies for jet lag, the negative consequences of shift work, and seasonal affective disorder.

SeminarNeuroscience

Separable pupillary signatures of perception and action during perceptual multistability

Jan Brascamp
Michigan State University
Jan 25, 2022

The pupil provides a rich, non-invasive measure of the neural bases of perception and cognition, and has been of particular value in uncovering the role of arousal-linked neuromodulation, which alters cortical processing as well as pupil size. But pupil size is subject to a multitude of influences, which complicates unique interpretation. We measured pupils of observers experiencing perceptual multistability -- an ever-changing subjective percept in the face of unchanging but inconclusive sensory input. In separate conditions the endogenously generated perceptual changes were either task-relevant or not, allowing a separation between perception-related and task-related pupil signals. Perceptual changes were marked by a complex pupil response that could be decomposed into two components: a dilation tied to task execution and plausibly indicative of an arousal-linked noradrenaline surge, and an overlapping constriction tied to the perceptual transient and plausibly a marker of altered visual cortical representation. Constriction, but not dilation, amplitude systematically depended on the time interval between perceptual changes, possibly providing an overt index of neural adaptation. These results show that the pupil provides a simultaneous reading on interacting but dissociable neural processes during perceptual multistability, and suggest that arousal-linked neuromodulation shapes action but not perception in these circumstances. This presentation covers work that was published in e-life

SeminarNeuroscienceRecording

Networks for multi-sensory attention and working memory

Barbara Shinn-Cunningham
Carnegie Mellon University
May 12, 2021

Converging evidence from fMRI and EEG shows that audtiory spatial attention engages the same fronto-parietal network associated with visuo-spatial attention. This network is distinct from an auditory-biased processing network that includes other frontal regions; this second network is can be recruited when observers extract rhythmic information from visual inputs. We recently used a dual-task paradigm to examine whether this "division of labor" between a visuo-spatial network and an auditory-rhythmic network can be observed in a working memory paradigm. We varied the sensory modality (visual vs. auditory) and information domain (spatial or rhythmic) that observers had to store in working memory, while also performing an intervening task. Behavior, pupilometry, and EEG results show a complex interaction across the working memory and intervening tasks, consistent with two cognitive control networks managing auditory and visual inputs based on the kind of information being processed.

SeminarNeuroscience

The pharmacology of consciousness

Olivia Carter
Melbourne School of Psychological Sciences
Mar 17, 2021

My research uses a range of methods to better understand how the brain’s natural chemicals control complex behaviours, thoughts and perceptions. I also have a particular fascination about the factors that determine the contents of an individual’s conscious experience. In this talk I will present work that sits at the intersection of these two research areas looking at the role of different neurotransmitter systems in driving changes in conscious state. Specifically, I will discuss a series of studies using ambiguous stimuli to explore the neuropharmacological processes that underly alternations in perceptual awareness. By comparing different methods and neurotransmitter systems including: serotonin (psychedelics), noradrenaline (pupillometry) and Glutamate/GABA (Magnetic Resonance Spectroscopy MRS) we can start to tease apart the distinct role that different neurotransmitter systems play in coordinating conscious experience across time.

SeminarNeuroscienceRecording

Arousal modulates retinal output

Sylvia Schröder
University of Sussex
Feb 21, 2021

Neural responses in the visual system are usually not purely visual but depend on behavioural and internal states such as arousal. This dependence is seen both in primary visual cortex (V1) and in subcortical brain structures receiving direct retinal input. In this talk, I will show that modulation by behavioural state arises as early as in the output of the retina.To measure retinal activity in the awake, intact brain, we imaged the synaptic boutons of retinal axons in the superficial superior colliculus (sSC) of mice. The activity of about half of the boutons depended not only on vision but also on running speed and pupil size, regardless of retinal illumination. Arousal typically reduced the boutons’ visual responses to preferred direction and their selectivity for direction and orientation.Arousal may affect activity in retinal boutons by presynaptic neuromodulation. To test whether the effects of arousal occur already in the retina, we recorded from retinal axons in the optic tract. We found that, in darkness, more than one third of the recorded axons was significantly correlated with running speed. Arousal had similar effects postsynaptically, in sSC neurons, independent of activity in V1, the other main source of visual inputs to colliculus. Optogenetic inactivation of V1 generally decreased activity in collicular neurons but did not diminish the effects of arousal. These results indicate that arousal modulates activity at every stage of the visual system. In the future, we will study the purpose and the underlying mechanisms of behavioural modulation in the early visual system

SeminarNeuroscience

Rapid State Changes Account for Apparent Brain and Behavior Variability

David McCormick
University of Oregon
Sep 16, 2020

Neural and behavioral responses to sensory stimuli are notoriously variable from trial to trial. Does this mean the brain is inherently noisy or that we don’t completely understand the nature of the brain and behavior? Here we monitor the state of activity of the animal through videography of the face, including pupil and whisker movements, as well as walking, while also monitoring the ability of the animal to perform a difficult auditory or visual task. We find that the state of the animal is continuously changing and is never stable. The animal is constantly becoming more or less activated (aroused) on a second and subsecond scale. These changes in state are reflected in all of the neural systems we have measured, including cortical, thalamic, and neuromodulatory activity. Rapid changes in cortical activity are highly correlated with changes in neural responses to sensory stimuli and the ability of the animal to perform auditory or visual detection tasks. On the intracellular level, these changes in forebrain activity are associated with large changes in neuronal membrane potential and the nature of network activity (e.g. from slow rhythm generation to sustained activation and depolarization). Monitoring cholinergic and noradrenergic axonal activity reveals widespread correlations across the cortex. However, we suggest that a significant component of these rapid state changes arise from glutamatergic pathways (e.g. corticocortical or thalamocortical), owing to their rapidity. Understanding the neural mechanisms of state-dependent variations in brain and behavior promises to significantly “denoise” our understanding of the brain.

ePoster

Pupil size anticipates exploration and predicts disorganization in prefrontal cortex

COSYNE 2022

ePoster

Pupil size anticipates exploration and predicts disorganization in prefrontal cortex

COSYNE 2022

ePoster

Pupil dynamics and hippocampal representations reveal fast statistical learning in mice

Adedamola Onih, Abdullah Aziz, Athena Akrami

COSYNE 2025

ePoster

Age-related differences in pupil dynamics assessed with cognitive pupillometry

Adrian Ruiz Chiapello, Enzo Buscato, Alexandra Pressigout, Isabelle Berry, Andrea Alamia, Florence Remy

FENS Forum 2024

ePoster

Bayesian perceptual adaptation in auditory motion perception: A multimodal approach with EEG and pupillometry

Roman Fleischmann, Burcu Bayram, David Meijer, Roberto Barumerli, Michelle Spierings, Ulrich Pomper, Robert Baumgartner

FENS Forum 2024

ePoster

Blink, and miss it: The dynamics of pupillary response distinguishes ‘attentional blink’ in rapid stream of information

Pragya Pandey, Indrajeet Indrajeet, Supriya Ray

FENS Forum 2024

ePoster

Control and coding of pupil size by hypothalamic orexin neurons

Nikola Grujic, Alexander Tesmer, Eva Bracey, Daria Peleg-Raibstein, Denis Burdakov

FENS Forum 2024

ePoster

Exploring pupil dynamics in freely moving rats during active integration of vision and posture

Loredana Stoica Ghita, Lukas Hillisch, Jonathan R. Whitlock

FENS Forum 2024

ePoster

Hippocampus is necessary for implicit statistical learning: Insights from mouse and human pupillometry

Adedamola Onih, Athena Akrami

FENS Forum 2024

ePoster

Pupil dynamics preceding switches in task engagement

Philippa Johnson, Sander Nieuwenhuis, Anne Urai

FENS Forum 2024

ePoster

Pupillary driven binocular integration in retinal ganglion cells

Tjasa Lapanja, Pietro Micheli, Gioia De Franceschi, Muraveva Anna, Andres Gonzalez-Guerra, Santiago Rompani

FENS Forum 2024

ePoster

The pupillary light reflex drives evoked responses in retinal ganglion cells

Pietro Micheli, Tjaša Lapanja, Andres Gonzales, Matteo Tripodi, Hiroki Asari, Santiago Rompani

FENS Forum 2024

ePoster

The pupillary light response is mediated by direct retino-iridal projections together with iris intrinsic contraction in lampreys

Cecilia Jimenez-Lopez, Paula Rivas-Ramírez, Marta Barandela, Carmen Núñez-González, Manuel Megías, Juan Pérez-Fernández

FENS Forum 2024

ePoster

The role of affect sharing in observational fear learning: Comparing skin conductance, pupil size, and fMRI data

Alexa Müllner-Huber, Timo Krug, Andreas Olsson, Claus Lamm

FENS Forum 2024

ePoster

Coupling of pupil-and neuronal population dynamics reveals diverse influences of arousal on cortical processing

Christian Keitel

Neuromatch 5