Quantitative Models
quantitative models
Language Representations in the Human Brain: A naturalistic approach
Natural language is strongly context-dependent and can be perceived through different sensory modalities. For example, humans can easily comprehend the meaning of complex narratives presented through auditory speech, written text, or visual images. To understand how complex language-related information is represented in the human brain there is a necessity to map the different linguistic and non-linguistic information perceived under different modalities across the cerebral cortex. To map this information to the brain, I suggest following a naturalistic approach and observing the human brain performing tasks in its naturalistic setting, designing quantitative models that transform real-world stimuli into specific hypothesis-related features, and building predictive models that can relate these features to brain responses. In my talk, I will present models of brain responses collected using functional magnetic resonance imaging while human participants listened to or read natural narrative stories. Using natural text and vector representations derived from natural language processing tools I will present how we can study language processing in the human brain across modalities, in different levels of temporal granularity, and across different languages.
Choice engineering and the modeling of operant learning
Organisms modify their behavior in response to its consequences, a phenomenon referred to as operant learning. Contemporary modeling of this learning behavior is based on reinforcement learning algorithms. I will discuss some of the challenges that these models face, and proposed a new approach to model-selection that is based on testing their ability to engineer behavior. Finally, I will present the results of The Choice Engineering Competition – an academic competition that compared the efficacies of qualitative and quantitative models of operant learning in shaping behavior.