← Back

Radiopharmaceuticals

Topic spotlight
TopicWorld Wide

radiopharmaceuticals

Discover seminars, jobs, and research tagged with radiopharmaceuticals across World Wide.
4 curated items4 Seminars
Updated about 3 years ago
4 items · radiopharmaceuticals
4 results
SeminarNeuroscience

Radiopharmaceutical evaluation of novel bifunctional chelators and bioconjugates for tumour imaging and therapy

Manja Kubeil
Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden- Rossendorf (HDZR), Germany
Oct 11, 2022

Bispidines (3,7-diazabicyclo[3.3.1]nonane) and their derivatives act as bifunctional chelators (BFC), combining the advantages of multidentate macrocyclic and acyclic ligands e.g. high kinetic inertness, rapid radiolabelling under mild conditions. This bicyclic chelator system shows a great diversity in terms of its denticity and type of functional groups, yielding a wide range of multidentate ligands that can bind a variety of different metal ions. In addition, they allow a facile functionalisation of targeting molecules such as peptides, peptidomimetics, and bispeci􀄀c antibodies. Herein, examples of various bispidine complexes labelled with [64Cu]Cu2+, [111In]In3+, [ 177Lu]Lu3+ or [ 225Ac]Ac3+ will be presented which provide a picture of how different substituents in􀄁uence the coordination mode. Target-speci􀄀c radiolabelled bispidine-based conjugates (e.g. peptides, antibody fragments, antibodies) investigated in vivo by positron emission or single-photon emission computed tomography will be presented and discussed in terms of their suitability for nuclear medicine applications.

SeminarNeuroscience

Growing a world-class precision medicine industry

Prof Gary Egan and Dr Maggie Aulsebrook
Monash Biomedical Imaging
May 24, 2022

Monash Biomedical Imaging is part of the new $71.2 million Australian Precision Medicine Enterprise (APME) facility, which will deliver large-scale development and manufacturing of precision medicines and theranostic radiopharmaceuticals for industry and research. A key feature of the APME project is a high-energy cyclotron with multiple production clean rooms, which will be located on the Monash Biomedical Imaging (MBI) site in Clayton. This strategic co-location will facilitate radiochemistry, PET and SPECT research and clinical use of theranostic (therapeutic and diagnostic) radioisotopes produced on-site. In this webinar, MBI’s Professor Gary Egan and Dr Maggie Aulsebrook will explain how the APME will secure Australia’s supply of critical radiopharmaceuticals, build a globally competitive Australian manufacturing hub, and train scientists and engineers for the Australian workforce. They will cover the APME’s state-of-the-art 30 MeV and 18-24 MeV cyclotrons and radiochemistry facilities, as well as the services that will be accessible to students, scientists, clinical researchers, and pharmaceutical companies in Australia and around the world. The APME is a collaboration between Monash University, Global Medical Solutions Australia, and Telix Pharmaceuticals. Professor Gary Egan is Director of Monash Biomedical Imaging, Director of the ARC Centre of Excellence for Integrative Brain Function and a Distinguished Professor at the Turner Institute for Brain and Mental Health, Monash University. He is also lead investigator of the Victorian Biomedical Imaging Capability, and Deputy Director of the Australian National Imaging Facility. Dr Maggie Aulsebrook obtained her PhD in Chemistry at Monash University and specialises in the development and clinical translation of radiopharmaceuticals. She has led the development of several investigational radiopharmaceuticals for first-in-human application. Maggie leads the Radiochemistry Platform at Monash Biomedical Imaging.

SeminarNeuroscience

Monash Biomedical Imaging highlights from 2021 and looking ahead to 2022

Gary Egan
Monash Biomedical Imaging
Dec 8, 2021

Despite the challenges COVID-19 has continued to present, Monash Biomedical Imaging (MBI) has had another outstanding year in terms of publications and scientific output. In this webinar, Professor Gary Egan, Director of MBI, will present an overview of MBI’s achievements during 2021 and outline the biomedical imaging research programs and partnerships in 2022. His presentation will cover: • MBI operational and research achievements during 2021 • Biomedical imaging technology developments and research outcomes during 2021 • Linked laboratories and research teams at MBI • Progress on the development of a cyclotron and precision radiopharmaceutical facility at Clayton • Emerging research opportunities at the Monash Heart Hospital in cardiology and cardiovascular disease. Professor Gary Egan is Director of Monash Biomedical Imaging, Director of the ARC Centre of Excellence for Integrative Brain Function and a Distinguished Professor at the Turner Institute for Brain and Mental Health, Monash University. He is also lead investigator of the Victorian Biomedical Imaging Capability, and Deputy Director of the Australian National Imaging Facility. His substantive body of published work has made a significant impact on the neuroimaging and neuroscience fields. He has sustained success in obtaining significant grants to support his own research and the development of facilities to advance biomedical imaging.

SeminarNeuroscience

Developing metal-based radiopharmaceuticals for imaging and therapy

Brett Paterson and Cormac Kelderman
Monash Biomedical Imaging
Jul 7, 2021

Personalised medicine will be greatly enhanced with the introduction of new radiopharmaceuticals for the diagnosis and treatment of various cancers, as well as cardiovascular disease and brain disorders. The unprecedented interest in developing theranostic radiopharmaceuticals is mainly due to the recent clinical successes of radiometal-based products including: • 177LuDOTA-TATE (trade name Lutathera, FDA approved in 2018), a peptide-based tracer that is used for treating metastatic neuroendocrine tumours • Ga 68 PSMA-11 (FDA approved in 2020), a positron emission tomography agent for imaging prostate-specific membrane antigen positive lesions in men with prostate cancer. In this webinar, Dr Brett Paterson and PhD candidate Mr Cormac Kelderman will present their research on developing the chemistry and radiochemistry to produce new radiometal-based imaging and therapy agents. They will discuss the synthesis of new molecules, the optimisation of the radiochemistry, and results from preclinical evaluations. Dr Brett Paterson is a National Imaging Facility Fellow at Monash Biomedical Imaging and academic group leader in the School of Chemistry, Monash University. His research focuses on the development of radiochemistry and new radiopharmaceuticals. Cormac Kelderman is a PhD candidate under the supervision of Dr Brett Paterson in the School of Chemistry, Monash University. His research focuses on developing new bis(thiosemicarbazone) chelators for technetium-99m SPECT imaging.