Responsibility
responsibility
10 “simple rules” for socially responsible science
Guidelines concerning the potentially harmful effects of scientific studies have historically focused on minimizing risk for participants. However, studies can also indirectly inflict harm on individuals and social groups through how they are designed, reported, and disseminated. As evidenced by recent criticisms and retractions of high-profile studies dealing with a wide variety of social issues, there is a scarcity of resources and guidance on how one can conduct research in a socially responsible manner. As such, even motivated researchers might publish work that has negative social impacts due to a lack of awareness. To address this, we proposed 10 recommendations (“simple rules”) for researchers who wish to conduct more socially responsible science. These recommendations cover major considerations throughout the life cycle of a study from inception to dissemination. They are not aimed to be a prescriptive list or a deterministic code of conduct. Rather, they are meant to help motivated scientists to reflect on their social responsibility as researchers and actively engage with the potential social impact of their research.
Beyond Volition
Voluntary actions are actions that agents choose to make. Volition is the set of cognitive processes that implement such choice and initiation. These processes are often held essential to modern societies, because they form the cognitive underpinning for concepts of individual autonomy and individual responsibility. Nevertheless, psychology and neuroscience have struggled to define volition, and have also struggled to study it scientifically. Laboratory experiments on volition, such as those of Libet, have been criticised, often rather naively, as focussing exclusively on meaningless actions, and ignoring the factors that make voluntary action important in the wider world. In this talk, I will first review these criticisms, and then look at extending scientific approaches to volition in three directions that may enrich scientific understanding of volition. First, volition becomes particularly important when the range of possible actions is large and unconstrained - yet most experimental paradigms involve minimal response spaces. We have developed a novel paradigm for eliciting de novo actions through verbal fluency, and used this to estimate the elusive conscious experience of generativity. Second, volition can be viewed as a mechanism for flexibility, by promoting adaptation of behavioural biases. This view departs from the tradition of defining volition by contrasting internally-generated actions with externally-triggered actions, and instead links volition to model-based reinforcement learning. By using the context of competitive games to re-operationalise the classic Libet experiment, we identified a form of adaptive autonomy that allows agents to reduce biases in their action choices. Interestingly, this mechanism seems not to require explicit understanding and strategic use of action selection rules, in contrast to classical ideas about the relation between volition and conscious, rational thought. Third, I will consider volition teleologically, as a mechanism for achieving counterfactual goals through complex problem-solving. This perspective gives a key role in mediating between understanding and planning on the one hand, and instrumental action on the other hand. Taken together, these three cognitive phenomena of generativity, flexibility, and teleology may partly explain why volition is such an important cognitive function for organisation of human behaviour and human flourishing. I will end by discussing how this enriched view of volition can relate to individual autonomy and responsibility.
Brain and Mind: Who is the Puppet and who the Puppeteer?
If the mind controls the brain, then there is free will and its corollaries, dignity and responsibility. You are king in your skull-sized kingdom and the architect of your destiny. If, on the other hand, the brain controls the mind, an incendiary conclusion follows: There can be no free will, no praise, no punishment and no purgatory. In this webinar, Professor George Paxinos will discuss his highly respected work on the construction of human and experimental animal brain atlases. He has discovered 94 brain regions, 64 homologies and published 58 books. His first book, The Rat Brain in Stereotaxic Coordinates, is the most cited publication in neuroscience and, for three decades, the third most cited book in science. Professor Paxinos will also present his recently published novel, A River Divided, which was 21 years in the making. Neuroscience principles were used in the formation of charters, such as those related to the mind, soul, free will and consciousness. Environmental issues are at the heart of the novel, including the question of whether the brain is the right ‘size’ for survival. Professor Paxinos studied at Berkeley, McGill and Yale and is now Scientia Professor of Medical Sciences at Neuroscience Research Australia and The University of New South Wales in Sydney.
Brain and Mind: Who is the Puppet and who the Puppeteer?
If the mind controls the brain, then there is FREE WILL and its corollaries, dignity and responsibility. You are king in your skull-sized kingdom and the architect of your destiny. If, on the other hand, the brain controls the mind, an incendiary conclusion follows: There can be no FREE WILL, no praise, no punishment and no purgatory. There will be a presentation of the speaker’s novel which, inter alia, is concerned with this question: 21 year in the making this is the first presentation of A River Divided (environmental genre)
Pediatric Migraine: Who, What, When, Where
This talk will address important aspects of pediatric migraine research, including: 1) Who is affected by pediatric migraine? 2) What does pediatric migraine look like, and what does a clinician need to do to reach a migraine diagnosis in a child? 3) When does pediatric migraine begin, and how might it present clinically before it presents as headache (e.g., infant colic, benign paroxysmal torticollis, cyclic vomiting syndrome etc.) 4) Where does responsibility for decreasing pediatric migraine frequency rest? What is society's role in preventing migraine in young people?
Understanding "why": The role of causality in cognition
Humans have a remarkable ability to figure out what happened and why. In this talk, I will shed light on this ability from multiple angles. I will present a computational framework for modeling causal explanations in terms of counterfactual simulations, and several lines of experiments testing this framework in the domain of intuitive physics. The model predicts people's causal judgments about a variety of physical scenes, including dynamic collision events, complex situations that involve multiple causes, omissions as causes, and causal responsibility for a system's stability. It also captures the cognitive processes underlying these judgments as revealed by spontaneous eye-movements. More recently, we have applied our computational framework to explain multisensory integration. I will show how people's inferences about what happened are well-accounted for by a model that integrates visual and auditory evidence through approximate physical simulations.
Free will, decision-making and machine learning
The question of free will has been topical for millennia, especially considering its links to moral responsibility and the ownership of that responsibility. Free will, or volition, is an incredibly complex phenomenon - and cannot easily be reduced to a single empirical paradigm. Roskies (2010) proposes that there are five cognitive aspects to be considered when developing a more complete understanding of volition. These are: intention, initiation, feeling, executive control and decision-making. Decision-making will be the focus of this talk, which steps through aspects of the philosophy of free will; highlights experimental paradigms stemming from the seminal work of Benjamin Libet et al., and proposes machine learning as a promising method in progressing the empirical studies of decision-making and free will.