← Back

Rhythmic Context

Topic spotlight
TopicWorld Wide

rhythmic context

Discover seminars, jobs, and research tagged with rhythmic context across World Wide.
2 curated items2 Seminars
Updated about 3 years ago
2 items · rhythmic context
2 results
SeminarNeuroscienceRecording

Pitch and Time Interact in Auditory Perception

Jesse Pazdera
McMaster University, Canada
Oct 25, 2022

Research into pitch perception and time perception has typically treated the two as independent processes. However, previous studies of music and speech perception have suggested that pitch and timing information may be processed in an integrated manner, such that the pitch of an auditory stimulus can influence a person’s perception, expectation, and memory of its duration and tempo. Typically, higher-pitched sounds are perceived as faster and longer in duration than lower-pitched sounds with identical timing. We conducted a series of experiments to better understand the limits of this pitch-time integrality. Across several experiments, we tested whether the higher-equals-faster illusion generalizes across the broader frequency range of human hearing by asking participants to compare the tempo of a repeating tone played in one of six octaves to a metronomic standard. When participants heard tones from all six octaves, we consistently found an inverted U-shaped effect of the tone’s pitch height, such that perceived tempo peaked between A4 (440 Hz) and A5 (880 Hz) and decreased at lower and higher octaves. However, we found that the decrease in perceived tempo at extremely high octaves could be abolished by exposing participants to high-pitched tones only, suggesting that pitch-induced timing biases are context sensitive. We additionally tested how the timing of an auditory stimulus influences the perception of its pitch, using a pitch discrimination task in which probe tones occurred early, late, or on the beat within a rhythmic context. Probe timing strongly biased participants to rate later tones as lower in pitch than earlier tones. Together, these results suggest that pitch and time exert a bidirectional influence on one another, providing evidence for integrated processing of pitch and timing information in auditory perception. Identifying the mechanisms behind this pitch-time interaction will be critical for integrating current models of pitch and tempo processing.

SeminarNeuroscience

Neurocognitive mechanisms of proactive temporal attention: challenging oscillatory and cortico-centered models

Assaf Breska
Max Planck Institute for Biological Cybernetics, Tübingen
Dec 1, 2021

To survive in a rapidly dynamic world, the brain predicts the future state of the world and proactively adjusts perception, attention and action. A key to efficient interaction is to predict and prepare to not only “where” and “what” things will happen, but also to “when”. I will present studies in healthy and neurological populations that investigated the cognitive architecture and neural basis of temporal anticipation. First, influential ‘entrainment’ models suggest that anticipation in rhythmic contexts, e.g. music or biological motion, uniquely relies on alignment of attentional oscillations to external rhythms. Using computational modeling and EEG, I will show that cortical neural patterns previously associated with entrainment in fact overlap with interval timing mechanisms that are used in aperiodic contexts. Second, temporal prediction and attention have commonly been associated with cortical circuits. Studying neurological populations with subcortical degeneration, I will present data that point to a double dissociation between rhythm- and interval-based prediction in the cerebellum and basal ganglia, respectively, and will demonstrate a role for the cerebellum in attentional control of perceptual sensitivity in time. Finally, using EEG in neurodegenerative patients, I will demonstrate that the cerebellum controls temporal adjustment of cortico-striatal neural dynamics, and use computational modeling to identify cerebellar-controlled neural parameters. Altogether, these findings reveal functionally and neural context-specificity and subcortical contributions to temporal anticipation, revising our understanding of dynamic cognition.