Robust Performance
robust performance
A multi-level account of hippocampal function in concept learning from behavior to neurons
A complete neuroscience requires multi-level theories that address phenomena ranging from higher-level cognitive behaviors to activities within a cell. Unfortunately, we don't have cognitive models of behavior whose components can be decomposed into the neural dynamics that give rise to behavior, leaving an explanatory gap. Here, we decompose SUSTAIN, a clustering model of concept learning, into neuron-like units (SUSTAIN-d; decomposed). Instead of abstract constructs (clusters), SUSTAIN-d has a pool of neuron-like units. With millions of units, a key challenge is how to bridge from abstract constructs such as clusters to neurons, whilst retaining high-level behavior. How does the brain coordinate neural activity during learning? Inspired by algorithms that capture flocking behavior in birds, we introduce a neural flocking learning rule to coordinate units that collectively form higher-level mental constructs ("virtual clusters"), neural representations (concept, place and grid cell-like assemblies), and parallels recurrent hippocampal activity. The decomposed model shows how brain-scale neural populations coordinate to form assemblies encoding concept and spatial representations, and why many neurons are required for robust performance. Our account provides a multi-level explanation for how cognition and symbol-like representations are supported by coordinated neural assemblies formed through learning.
Advancing Brain-Computer Interfaces by adopting a neural population approach
Brain-computer interfaces (BCIs) have afforded paralysed users “mental control” of computer cursors and robots, and even of electrical stimulators that reanimate their own limbs. Most existing BCIs map the activity of hundreds of motor cortical neurons recorded with implanted electrodes into control signals to drive these devices. Despite these impressive advances, the field is facing a number of challenges that need to be overcome in order for BCIs to become widely used during daily living. In this talk, I will focus on two such challenges: 1) having BCIs that allow performing a broad range of actions; and 2) having BCIs whose performance is robust over long time periods. I will present recent studies from our group in which we apply neuroscientific findings to address both issues. This research is based on an emerging view about how the brain works. Our proposal is that brain function is not based on the independent modulation of the activity of single neurons, but rather on specific population-wide activity patters —which mathematically define a “neural manifold”. I will provide evidence in favour of such a neural manifold view of brain function, and illustrate how advances in systems neuroscience may be critical for the clinical success of BCIs.
Leveraging neural manifolds to advance brain-computer interfaces
Brain-computer interfaces (BCIs) have afforded paralysed users “mental control” of computer cursors and robots, and even of electrical stimulators that reanimate their own limbs. Most existing BCIs map the activity of hundreds of motor cortical neurons recorded with implanted electrodes into control signals to drive these devices. Despite these impressive advances, the field is facing a number of challenges that need to be overcome in order for BCIs to become widely used during daily living. In this talk, I will focus on two such challenges: 1) having BCIs that allow performing a broad range of actions; and 2) having BCIs whose performance is robust over long time periods. I will present recent studies from our group in which we apply neuroscientific findings to address both issues. This research is based on an emerging view about how the brain works. Our proposal is that brain function is not based on the independent modulation of the activity of single neurons, but rather on specific population-wide activity patters —which mathematically define a “neural manifold”. I will provide evidence in favour of such a neural manifold view of brain function, and illustrate how advances in systems neuroscience may be critical for the clinical success of BCIs.