Rsa
RSA
Organization of thalamic networks and mechanisms of dysfunction in schizophrenia and autism
Thalamic networks, at the core of thalamocortical and thalamosubcortical communications, underlie processes of perception, attention, memory, emotions, and the sleep-wake cycle, and are disrupted in mental disorders, including schizophrenia and autism. However, the underlying mechanisms of pathology are unknown. I will present novel evidence on key organizational principles, structural, and molecular features of thalamocortical networks, as well as critical thalamic pathway interactions that are likely affected in disorders. This data can facilitate modeling typical and abnormal brain function and can provide the foundation to understand heterogeneous disruption of these networks in sleep disorders, attention deficits, and cognitive and affective impairments in schizophrenia and autism, with important implications for the design of targeted therapeutic interventions
The representation of speech conversations in the human auditory cortex
Exploring the cerebral mechanisms of acoustically-challenging speech comprehension - successes, failures and hope
Comprehending speech under acoustically challenging conditions is an everyday task that we can often execute with ease. However, accomplishing this requires the engagement of cognitive resources, such as auditory attention and working memory. The mechanisms that contribute to the robustness of speech comprehension are of substantial interest in the context of hearing mild to moderate hearing impairment, in which affected individuals typically report specific difficulties in understanding speech in background noise. Although hearing aids can help to mitigate this, they do not represent a universal solution, thus, finding alternative interventions is necessary. Given that age-related hearing loss (“presbycusis”) is inevitable, developing new approaches is all the more important in the context of aging populations. Moreover, untreated hearing loss in middle age has been identified as the most significant potentially modifiable predictor of dementia in later life. I will present research that has used a multi-methodological approach (fMRI, EEG, MEG and non-invasive brain stimulation) to try to elucidate the mechanisms that comprise the cognitive “last mile” in speech acousticallychallenging speech comprehension and to find ways to enhance them.
Conversations with Caves? Understanding the role of visual psychological phenomena in Upper Palaeolithic cave art making
How central were psychological features deriving from our visual systems to the early evolution of human visual culture? Art making emerged deep in our evolutionary history, with the earliest art appearing over 100,000 years ago as geometric patterns etched on fragments of ochre and shell, and figurative representations of prey animals flourishing in the Upper Palaeolithic (c. 40,000 – 15,000 years ago). The latter reflects a complex visual process; the ability to represent something that exists in the real world as a flat, two-dimensional image. In this presentation, I argue that pareidolia – the psychological phenomenon of seeing meaningful forms in random patterns, such as perceiving faces in clouds – was a fundamental process that facilitated the emergence of figurative representation. The influence of pareidolia has often been anecdotally observed in Upper Palaeolithic art examples, particularly cave art where the topographic features of cave wall were incorporated into animal depictions. Using novel virtual reality (VR) light simulations, I tested three hypotheses relating to pareidolia in the caves of Upper Palaeolithic cave art in the caves of Las Monedas and La Pasiega (Cantabria, Spain). To evaluate this further, I also developed an interdisciplinary VR eye-tracking experiment, where participants were immersed in virtual caves based on the cave of El Castillo (Cantabria, Spain). Together, these case studies suggest that pareidolia was an intrinsic part of artist-cave interactions (‘conversations’) that influenced the form and placement of figurative depictions in the cave. This has broader implications for conceiving of the role of visual psychological phenomena in the emergence and development of figurative art in the Palaeolithic.
Where Cognitive Neuroscience Meets Industry: Navigating the Intersections of Academia and Industry
In this talk, Mirta will share her journey from her education a mathematically-focused high school to her currently unconventional career in London, emphasizing the evolution from a local education in Croatia to international experiences in the US and UK. We will explore the concept of interdisciplinary careers in the modern world, viewing them through the framework of increasing demand, flexibility, and dynamism in the current workplace. We will underscore the significance of interdisciplinary research for launching careers outside of academia, and bolstering those within. I will challenge the conventional norm of working either in academia or industry, and encourage discussion about the opportunities for combining the two in a myriad of career opportunities. I’ll use examples from my own and others’ research to highlight opportunities for early career researchers to extend their work into practical applications. Such an approach leverages the strengths of both sectors, fostering innovation and practical applications of research findings. I hope these insights can offer valuable perspectives for those looking to navigate the evolving demands of the global job market, illustrating the advantages of a versatile skill set that spans multiple disciplines and allows extensions into exciting career options.
Seizure control by electrical stimulation: parameters and mechanisms
Seizure suppression by deep brain stimulation (DBS) applies high frequency stimulation (HFS) to grey matter to block seizures. In this presentation, I will present the results of a different method that employs low frequency stimulation (LFS) (1 to 10Hz) of white matter tracts to prevent seizures. The approach has been shown to be effective in the hippocampus by stimulating the ventral and dorsal hippocampal commissure in both animal and human studies respectively for mesial temporal lobe seizures. A similar stimulation paradigm has been shown to be effective at controlling focal cortical seizures in rats with corpus callosum stimulation. This stimulation targets the axons of the corpus callosum innervating the focal zone at low frequencies (5 to 10Hz) and has been shown to significantly reduce both seizure and spike frequency. The mechanisms of this suppression paradigm have been elucidated with in-vitro studies and involve the activation of two long-lasting inhibitory potentials GABAB and sAHP. LFS mechanisms are similar in both hippocampus and cortical brain slices. Additionally, the results show that LFS does not block seizures but rather decreases the excitability of the tissue to prevent seizures. Three methods of seizure suppression, LFS applied to fiber tracts, HFS applied to focal zone and stimulation of the anterior nucleus of the thalamus (ANT) were compared directly in the same animal in an in-vivo epilepsy model. The results indicate that LFS generated a significantly higher level of suppression, indicating LFS of white matter tract could be a useful addition as a stimulation paradigm for the treatment of epilepsy.
Using Adversarial Collaboration to Harness Collective Intelligence
There are many mysteries in the universe. One of the most significant, often considered the final frontier in science, is understanding how our subjective experience, or consciousness, emerges from the collective action of neurons in biological systems. While substantial progress has been made over the past decades, a unified and widely accepted explanation of the neural mechanisms underpinning consciousness remains elusive. The field is rife with theories that frequently provide contradictory explanations of the phenomenon. To accelerate progress, we have adopted a new model of science: adversarial collaboration in team science. Our goal is to test theories of consciousness in an adversarial setting. Adversarial collaboration offers a unique way to bolster creativity and rigor in scientific research by merging the expertise of teams with diverse viewpoints. Ideally, we aim to harness collective intelligence, embracing various perspectives, to expedite the uncovering of scientific truths. In this talk, I will highlight the effectiveness (and challenges) of this approach using selected case studies, showcasing its potential to counter biases, challenge traditional viewpoints, and foster innovative thought. Through the joint design of experiments, teams incorporate a competitive aspect, ensuring comprehensive exploration of problems. This method underscores the importance of structured conflict and diversity in propelling scientific advancement and innovation.
Enhancing Qualitative Coding with Large Language Models: Potential and Challenges
Qualitative coding is the process of categorizing and labeling raw data to identify themes, patterns, and concepts within qualitative research. This process requires significant time, reflection, and discussion, often characterized by inherent subjectivity and uncertainty. Here, we explore the possibility to leverage large language models (LLM) to enhance the process and assist researchers with qualitative coding. LLMs, trained on extensive human-generated text, possess an architecture that renders them capable of understanding the broader context of a conversation or text. This allows them to extract patterns and meaning effectively, making them particularly useful for the accurate extraction and coding of relevant themes. In our current approach, we employed the chatGPT 3.5 Turbo API, integrating it into the qualitative coding process for data from the SWISS100 study, specifically focusing on data derived from centenarians' experiences during the Covid-19 pandemic, as well as a systematic centenarian literature review. We provide several instances illustrating how our approach can assist researchers with extracting and coding relevant themes. With data from human coders on hand, we highlight points of convergence and divergence between AI and human thematic coding in the context of these data. Moving forward, our goal is to enhance the prototype and integrate it within an LLM designed for local storage and operation (LLaMa). Our initial findings highlight the potential of AI-enhanced qualitative coding, yet they also pinpoint areas requiring attention. Based on these observations, we formulate tentative recommendations for the optimal integration of LLMs in qualitative coding research. Further evaluations using varied datasets and comparisons among different LLMs will shed more light on the question of whether and how to integrate these models into this domain.
Internet interventions targeting grief symptoms
Web-based self-help interventions for coping with prolonged grief have established their efficacy. However, few programs address recent losses and investigate the effect of self-tailoring of the content. In an international project, the text-based self-help program LIVIA was adapted and complemented with an Embodied Conversational Agent, an initial risk assessment and a monitoring tool. The new program SOLENA was evaluated in three trials in Switzerland, the Netherlands and Portugal. The aim of the trials was to evaluate the clinical efficacy for reducing grief, depression and loneliness and to examine client satisfaction and technology acceptance. The talk will present the SOLENA program and report results of the Portuguese and Dutch trial as well as preliminary results of the Swiss RCT. The ongoing Swiss trial compares a standardised to a self-tailored delivery format and analyses clinical outcomes, the helpfulness of specific content and the working alliance. Finally, lessons learned in the development and evaluation of a web-based self-help intervention for older adults will be discusses.
The centrality of population-level factors to network computation is demonstrated by a versatile approach for training spiking networks
Neural activity is often described in terms of population-level factors extracted from the responses of many neurons. Factors provide a lower-dimensional description with the aim of shedding light on network computations. Yet, mechanistically, computations are performed not by continuously valued factors but by interactions among neurons that spike discretely and variably. Models provide a means of bridging these levels of description. We developed a general method for training model networks of spiking neurons by leveraging factors extracted from either data or firing-rate-based networks. In addition to providing a useful model-building framework, this formalism illustrates how reliable and continuously valued factors can arise from seemingly stochastic spiking. Our framework establishes procedures for embedding this property in network models with different levels of realism. The relationship between spikes and factors in such networks provides a foundation for interpreting (and subtly redefining) commonly used quantities such as firing rates.
Dynamic endocrine modulation of the nervous system
Sex hormones are powerful neuromodulators of learning and memory. In rodents and nonhuman primates estrogen and progesterone influence the central nervous system across a range of spatiotemporal scales. Yet, their influence on the structural and functional architecture of the human brain is largely unknown. Here, I highlight findings from a series of dense-sampling neuroimaging studies from my laboratory designed to probe the dynamic interplay between the nervous and endocrine systems. Individuals underwent brain imaging and venipuncture every 12-24 hours for 30 consecutive days. These procedures were carried out under freely cycling conditions and again under a pharmacological regimen that chronically suppresses sex hormone production. First, resting state fMRI evidence suggests that transient increases in estrogen drive robust increases in functional connectivity across the brain. Time-lagged methods from dynamical systems analysis further reveals that these transient changes in estrogen enhance within-network integration (i.e. global efficiency) in several large-scale brain networks, particularly Default Mode and Dorsal Attention Networks. Next, using high-resolution hippocampal subfield imaging, we found that intrinsic hormone fluctuations and exogenous hormone manipulations can rapidly and dynamically shape medial temporal lobe morphology. Together, these findings suggest that neuroendocrine factors influence the brain over short and protracted timescales.
PIEZO2 in somatosensory neurons coordinates gastrointestinal transit
The transit of food through the gastrointestinal tract is critical for nutrient absorption and survival, and the gastrointestinal tract has the ability to initiate motility reflexes triggered by luminal distention. This complex function depends on the crosstalk between extrinsic and intrinsic neuronal innervation within the intestine, as well as local specialized enteroendocrine cells. However, the molecular mechanisms and the subset of sensory neurons underlying the initiation and regulation of intestinal motility remain largely unknown. Here, we show that humans lacking PIEZO2 exhibit impaired bowel sensation and motility. Piezo2 in mouse dorsal root but not nodose ganglia is required to sense gut content, and this activity slows down food transit rates in the stomach, small intestine, and colon. Indeed, Piezo2 is directly required to detect colon distension in vivo. Our study unveils the mechanosensory mechanisms that regulate the transit of luminal contents throughout the gut, which is a critical process to ensure proper digestion, nutrient absorption, and waste removal. These findings set the foundation of future work to identify the highly regulated interactions between sensory neurons, enteric neurons and non- neuronal cells that control gastrointestinal motility.
Cortical seizure mechanisms: insights from calcium, glutamate and GABA imaging
Focal neocortical epilepsy is associated with intermittent brief population discharges (interictal spikes), which resemble sentinel spikes that often occur at the onset of seizures. Why interictal spikes self-terminate whilst seizures persist and propagate is incompletely understood, but is likely to relate to the intermittent collapse of feed-forward GABAergic inhibition. Inhibition could fail through multiple mechanisms, including (i) an attenuation or even reversal of the driving force for chloride in postsynaptic neurons because of intense activation of GABAA receptors, (ii) an elevation of potassium secondary to chloride influx leading to depolarization of neurons, or (iii) insufficient GABA release from interneurons. I shall describe the results of experiments using fluorescence imaging of calcium, glutamate or GABA in awake rodent models of neocortical epileptiform activity. Interictal spikes were accompanied by brief glutamate transients which were maximal at the initiation site and rapidly propagatedcentrifugally. GABA transients lasted longer than glutamate transients and were maximal ~1.5 mm from the focus. Prior to seizure initiation GABA transients were attenuated, whilst glutamate transients increased, consistent with a progressive failure of local inhibitory restraint. As seizures increased in frequency, there was a gradual increase in the spatial extent of spike-associated glutamate transients associated with interictal spikes. Neurotransmitter imaging thus reveals a progressive collapse of an annulus of feed-forward GABA release, allowing runaway recruitment of excitatory neurons as a fundamental mechanism underlying the escape of seizures from local inhibitory restraint.
Meta-learning functional plasticity rules in neural networks
Synaptic plasticity is known to be a key player in the brain’s life-long learning abilities. However, due to experimental limitations, the nature of the local changes at individual synapses and their link with emerging network-level computations remain unclear. I will present a numerical, meta-learning approach to deduce plasticity rules from either neuronal activity data and/or prior knowledge about the network's computation. I will first show how to recover known rules, given a human-designed loss function in rate networks, or directly from data, using an adversarial approach. Then I will present how to scale-up this approach to recurrent spiking networks using simulation-based inference.
A possible role of the posterior alpha as a railroad switcher between dorsal and ventral pathways
Suppose you are on your favorite touchscreen device consciously and deliberately deciding emails to read or delete. In other words, you are consciously and intentionally looking, tapping, and swiping. Now suppose that you are doing this while neuroscientists are recording your brain activity. Eventually, the neuroscientists are familiar enough with your brain activity and behavior that they run an experiment with subliminal cues which reveals that your looking, tapping, and swiping seem to be determined by a random switch in your brain. You are not aware of it, or its impact on your decisions or movements. Would these predictions undermine your sense of free will? Some have argued that it should. Although this inference from unreflective and/or random intention mechanisms to free will skepticism, may seem intuitive at first, there are already objections to it. So, even if this thought experiment is plausible, it may not actually undermine our sense of free will.
Versatile treadmill system for measuring locomotion and neural activity in head-fixed mice
Here, we present a protocol for using a versatile treadmill system to measure locomotion and neural activity at high temporal resolution in head-fixed mice. We first describe the assembly of the treadmill system. We then detail surgical implantation of the headplate on the mouse skull, followed by habituation of mice to locomotion on the treadmill system. The system is compact, movable, and simple to synchronize with other data streams, making it ideal for monitoring brain activity in diverse behavioral frameworks. https://dx.doi.org/10.1016/j.xpro.2022.101701
Universal function approximation in balanced spiking networks through convex-concave boundary composition
The spike-threshold nonlinearity is a fundamental, yet enigmatic, component of biological computation — despite its role in many theories, it has evaded definitive characterisation. Indeed, much classic work has attempted to limit the focus on spiking by smoothing over the spike threshold or by approximating spiking dynamics with firing-rate dynamics. Here, we take a novel perspective that captures the full potential of spike-based computation. Based on previous studies of the geometry of efficient spike-coding networks, we consider a population of neurons with low-rank connectivity, allowing us to cast each neuron’s threshold as a boundary in a space of population modes, or latent variables. Each neuron divides this latent space into subthreshold and suprathreshold areas. We then demonstrate how a network of inhibitory (I) neurons forms a convex, attracting boundary in the latent coding space, and a network of excitatory (E) neurons forms a concave, repellant boundary. Finally, we show how the combination of the two yields stable dynamics at the crossing of the E and I boundaries, and can be mapped onto a constrained optimization problem. The resultant EI networks are balanced, inhibition-stabilized, and exhibit asynchronous irregular activity, thereby closely resembling cortical networks of the brain. Moreover, we demonstrate how such networks can be tuned to either suppress or amplify noise, and how the composition of inhibitory convex and excitatory concave boundaries can result in universal function approximation. Our work puts forth a new theory of biologically-plausible computation in balanced spiking networks, and could serve as a novel framework for scalable and interpretable computation with spikes.
Memory-enriched computation and learning in spiking neural networks through Hebbian plasticity
Memory is a key component of biological neural systems that enables the retention of information over a huge range of temporal scales, ranging from hundreds of milliseconds up to years. While Hebbian plasticity is believed to play a pivotal role in biological memory, it has so far been analyzed mostly in the context of pattern completion and unsupervised learning. Here, we propose that Hebbian plasticity is fundamental for computations in biological neural systems. We introduce a novel spiking neural network (SNN) architecture that is enriched by Hebbian synaptic plasticity. We experimentally show that our memory-equipped SNN model outperforms state-of-the-art deep learning mechanisms in a sequential pattern-memorization task, as well as demonstrate superior out-of-distribution generalization capabilities compared to these models. We further show that our model can be successfully applied to one-shot learning and classification of handwritten characters, improving over the state-of-the-art SNN model. We also demonstrate the capability of our model to learn associations for audio to image synthesis from spoken and handwritten digits. Our SNN model further presents a novel solution to a variety of cognitive question answering tasks from a standard benchmark, achieving comparable performance to both memory-augmented ANN and SNN-based state-of-the-art solutions to this problem. Finally we demonstrate that our model is able to learn from rewards on an episodic reinforcement learning task and attain near-optimal strategy on a memory-based card game. Hence, our results show that Hebbian enrichment renders spiking neural networks surprisingly versatile in terms of their computational as well as learning capabilities. Since local Hebbian plasticity can easily be implemented in neuromorphic hardware, this also suggests that powerful cognitive neuromorphic systems can be build based on this principle.
Analogy and Spatial Cognition: How and Why they matter for STEM learning
Space is the universal donor for relations" (Gentner, 2014). This quote is the foundation of my talk. I will explore how and why visual representations and analogies are related, and why. I will also explore how considering the relation between analogy and spatial reasoning can shed light on why and how spatial thinking is correlated with learning in STEM fields. For example, I will consider children’s numbers sense and learning of the number line from the perspective of analogical reasoning.
The Picower Institute 20th Anniversary Exhibition: Two Decades of Discovery & Impact
On September 22, 2022 we will celebrate the 20th anniversary of The Picower Institute for Learning and Memory with an Exhibition Symposium — a day-long hybrid event highlighting "Two Decades of Discovery & Impact" since the launch of the Institute by a transformational gift from Barbara and Jeffry Picower. The symposium will feature a range of lay-friendly brain science talks from Picower Institute faculty and their alumni with opportunities to informally interact at lunch and at the reception that will follow the talks.
The functional architecture of the human entorhinal-hippocampal circuitry
Cognitive functions like episodic memory require the formation of cohesive representations. Critical for that process is the entorhinal-hippocampal circuitry’s interaction with cortical information streams and the circuitry’s inner communication. With ultra-high field functional imaging we investigated the functional architecture of the human entorhinal-hippocampal circuitry. We identified an organization that is consistent with convergence of information in anterior and lateral entorhinal subregions and the subiculum/CA1 border while keeping a second route specific for scene processing in a posterior-medial entorhinal subregion and the distal subiculum. Our findings agree with information flow along information processing routes which functionally split the entorhinal-hippocampal circuitry along its transversal axis. My talk will demonstrate how ultra-high field imaging in humans can bridge the gap between anatomical and electrophysiological findings in rodents and our understanding of human cognition. Moreover, I will point out the implications that basic research on functional architecture has for cognitive and clinical research perspectives.
Pynapple: a light-weight python package for neural data analysis - webinar + tutorial
In systems neuroscience, datasets are multimodal and include data-streams of various origins: multichannel electrophysiology, 1- or 2-p calcium imaging, behavior, etc. Often, the exact nature of data streams are unique to each lab, if not each project. Analyzing these datasets in an efficient and open way is crucial for collaboration and reproducibility. In this combined webinar and tutorial, Adrien Peyrache and Guillaume Viejo will present Pynapple, a Python-based data analysis pipeline for systems neuroscience. Designed for flexibility and versatility, Pynapple allows users to perform cross-modal neural data analysis via a common programming approach which facilitates easy sharing of both analysis code and data.
Pynapple: a light-weight python package for neural data analysis - webinar + tutorial
In systems neuroscience, datasets are multimodal and include data-streams of various origins: multichannel electrophysiology, 1- or 2-p calcium imaging, behavior, etc. Often, the exact nature of data streams are unique to each lab, if not each project. Analyzing these datasets in an efficient and open way is crucial for collaboration and reproducibility. In this combined webinar and tutorial, Adrien Peyrache and Guillaume Viejo will present Pynapple, a Python-based data analysis pipeline for systems neuroscience. Designed for flexibility and versatility, Pynapple allows users to perform cross-modal neural data analysis via a common programming approach which facilitates easy sharing of both analysis code and data.
Systemic regulation and measurement of mammalian aging
Brain aging leads to cognitive decline and is the main risk factor for sporadic forms of neurodegenerative diseases including Alzheimer’s disease. While brain cell- and tissue-intrinsic factors are likely key determinants of the aging process recent studies document a remarkable susceptibility of the brain to circulatory factors. Thus, blood borne factors from young mice or humans are sufficient to slow aspects of brain aging and improve cognitive function in old mice and, vice versa, factors from old mice are detrimental for young mice and impair cognition. We found evidence that the cerebrovasculature is an important target of circulatory factors and that brain endothelial cells show prominent age-related transcriptional changes in response to plasma. Furthermore, plasma proteins are taken up broadly into the young brain through receptor mediated transport which declines with aging. At the same time, brain derived proteins are detectable in plasma allowing us to measure physiological changes linked to brain aging in plasma. We are exploring the relevance of these findings for neurodegeneration and potential applications towards therapies.
Controversial stimuli: Optimizing experiments to adjudicate among computational hypotheses
Social immunity in ants: disease defense of the colony
Social insects fight disease as a collective. Their colonies are protected against disease by the combination of the individual immune defenses of all colony members and their jointly performed nest- and colony-hygiene. This social immunity is achieved by cooperative behaviors to reduce pathogen load of the colony and to prevent transmission along the social interaction networks of colony members. Individual and social immunity interact: performance of sanitary care can affect future disease susceptibility, yet also vice versa, individuals differing in susceptibility adjust their sanitary care performance to their individual risk of infection. I present the integrated approach we use to understand how colony protection arises from the individual and collective actions of colony members and how it affects pathogen communities and hence disease ecology.
In pursuit of a universal, biomimetic iBCI decoder: Exploring the manifold representations of action in the motor cortex
My group pioneered the development of a novel intracortical brain computer interface (iBCI) that decodes muscle activity (EMG) from signals recorded in the motor cortex of animals. We use these synthetic EMG signals to control Functional Electrical Stimulation (FES), which causes the muscles to contract and thereby restores rudimentary voluntary control of the paralyzed limb. In the past few years, there has been much interest in the fact that information from the millions of neurons active during movement can be reduced to a small number of “latent” signals in a low-dimensional manifold computed from the multiple neuron recordings. These signals can be used to provide a stable prediction of the animal’s behavior over many months-long periods, and they may also provide the means to implement methods of transfer learning across individuals, an application that could be of particular importance for paralyzed human users. We have begun to examine the representation within this latent space, of a broad range of behaviors, including well-learned, stereotyped movements in the lab, and more natural movements in the animal’s home cage, meant to better represent a person’s daily activities. We intend to develop an FES-based iBCI that will restore voluntary movement across a broad range of motor tasks without need for intermittent recalibration. However, the nonlinearities and context dependence within this low-dimensional manifold present significant challenges.
It’s not over our heads: Why human language needs a body
n the ‘orthodox’ view, cognition has been seen as manipulation of symbolic, mental representations, separate from the body. This dualist Cartesian approach characterised much of twentieth-century thought and is still taken for granted by many people today. Language, too, has for a long time been treated across scientific domains as a system operating largely independently from perception, action, and the body (articulatory-perceptual organs notwithstanding). This could lead one into believing that to emulate linguistic behaviour, it would suffice to develop ‘software’ operating on abstract representations that would work on any computational machine. Yet the brain is not the sole problem-solving resource we have at our disposal. The disembodied picture is inaccurate for numerous reasons, which will be presented addressing the issue of the indissoluble link between cognition, language, body, and environment in understanding and learning. The talk will conclude with implications and suggestions for pedagogy, relevant for disciplines as diverse as instruction in language, mathematics, and sports.
Open-source neurotechnologies for imaging cortex-wide neural activity in behaving animals
Neural computations occurring simultaneously in multiple cerebral cortical regions are critical for mediating behaviors. Progress has been made in understanding how neural activity in specific cortical regions contributes to behavior. However, there is a lack of tools that allow simultaneous monitoring and perturbing neural activity from multiple cortical regions. We have engineered a suite of technologies to enable easy, robust access to much of the dorsal cortex of mice for optical and electrophysiological recordings. First, I will describe microsurgery robots that can programmed to perform delicate microsurgical procedures such as large bilateral craniotomies across the cortex and skull thinning in a semi-automated fashion. Next, I will describe digitally designed, morphologically realistic, transparent polymer skulls that allow long-term (+300 days) optical access. These polymer skulls allow mesoscopic imaging, as well as cellular and subcellular resolution two-photon imaging of neural structures up to 600 µm deep. We next engineered a widefield, miniaturized, head-mounted fluorescence microscope that is compatible with transparent polymer skull preparations. With a field of view of 8 × 10 mm2 and weighing less than 4 g, the ‘mini-mScope’ can image most of the mouse dorsal cortex with resolutions ranging from 39 to 56 µm. We used the mini-mScope to record mesoscale calcium activity across the dorsal cortex during sensory-evoked stimuli, open field behaviors, social interactions and transitions from wakefulness to sleep.
Taking a closer look at the contribution of the dorsal pathway to perception
Black Excellence in Psychology
Ruth Winifred Howard (March 25, 1900 – February 12, 1997) was one of the first African-American women to earn a Ph.D. in Psychology. Her research focused on children with special needs. Join us as we celebrate her birthday anniversary with 5 distinguished Psychologists.
Brain dynamics and flexible behaviors
Executive control processes and flexible behaviors rely on the integrity of, and dynamic interactions between, large-scale functional brain networks. The right insular cortex is a critical component of a salience/midcingulo-insular network that is thought to mediate interactions between brain networks involved in externally oriented (central executive/lateral frontoparietal network) and internally oriented (default mode/medial frontoparietal network) processes. How these brain systems reconfigure with development is a critical question for cognitive neuroscience, with implications for neurodevelopmental pathologies affecting brain connectivity. I will describe studies examining how brain network dynamics support flexible behaviors in typical and atypical development, presenting evidence suggesting a unique role for the dorsal anterior insular from studies of meta-analytic connectivity modeling, dynamic functional connectivity, and structural connectivity. These findings from adults, typically developing children, and children with autism suggest that structural and functional maturation of insular pathways is a critical component of the process by which human brain networks mature to support complex, flexible cognitive processes throughout the lifespan.
Building a Simple and Versatile Illumination System for Optogenetic Experiments
Controlling biological processes using light has increased the accuracy and speed with which researchers can manipulate many biological processes. Optical control allows for an unprecedented ability to dissect function and holds the potential for enabling novel genetic therapies. However, optogenetic experiments require adequate light sources with spatial, temporal, or intensity control, often a bottleneck for researchers. Here we detail how to build a low-cost and versatile LED illumination system that is easily customizable for different available optogenetic tools. This system is configurable for manual or computer control with adjustable LED intensity. We provide an illustrated step-by-step guide for building the circuit, making it computer-controlled, and constructing the LEDs. To facilitate the assembly of this device, we also discuss some basic soldering techniques and explain the circuitry used to control the LEDs. Using our open-source user interface, users can automate precise timing and pulsing of light on a personal computer (PC) or an inexpensive tablet. This automation makes the system useful for experiments that use LEDs to control genes, signaling pathways, and other cellular activities that span large time scales. For this protocol, no prior expertise in electronics is required to build all the parts needed or to use the illumination system to perform optogenetic experiments.
4D Chromosome Organization: Combining Polymer Physics, Knot Theory and High Performance Computing
Self-organization is a universal concept spanning numerous disciplines including mathematics, physics and biology. Chromosomes are self-organizing polymers that fold into orderly, hierarchical and yet dynamic structures. In the past decade, advances in experimental biology have provided a means to reveal information about chromosome connectivity, allowing us to directly use this information from experiments to generate 3D models of individual genes, chromosomes and even genomes. In this talk I will present a novel data-driven modeling approach and discuss a number of possibilities that this method holds. I will discuss a detailed study of the time-evolution of X chromosome inactivation, highlighting both global and local properties of chromosomes that result in topology-driven dynamical arrest and present and characterize a novel type of motion we discovered in knots that may have applications to nanoscale materials and machines.
Social learning about rewards. How do rodents learn about the world from their peers?
Attention to visual motion: shaping sensation into perception
Evolution has endowed primates, including humans, with a powerful visual system, seemingly providing us with a detailed perception of our surroundings. But in reality the underlying process is one of active filtering, enhancement and reshaping. For visual motion perception, the dorsal pathway in primate visual cortex and in particular area MT/V5 is considered to be of critical importance. Combining physiological and psychophysical approaches we have used the processing and perception of visual motion and area MT/V5 as a model for the interaction of sensory (bottom-up) signals with cognitive (top-down) modulatory influences that characterizes visual perception. Our findings document how this interaction enables visual cortex to actively generate a neural representation of the environment that combines the high-performance sensory periphery with selective modulatory influences for producing an “integrated saliency map’ of the environment.
Towards an inclusive neurobiology of language
Understanding how our brains process language is one of the fundamental issues in cognitive science. In order to reach such understanding, it is critical to cover the full spectrum of manners in which humans acquire and experience language. However, due to a myriad of socioeconomic factors, research has disproportionately focused on monolingual English speakers. In this talk, I present a series of studies that systematically target fundamental questions about bilingual language use across a range of conversational contexts, both in production and comprehension. The results lay the groundwork to propose a more inclusive theory of the neurobiology of language, with an architecture that assumes a common selection principle at each linguistic level and can account for attested features of both bilingual and monolingual speech in, but crucially also out of, experimental settings.
Structure, Function, and Learning in Distributed Neuronal Networks
A central goal in neuroscience is to understand how orchestrated computations in the brain arise from the properties of single neurons and networks of such neurons. Answering this question requires theoretical advances that shine light into the ‘black box’ of neuronal networks. In this talk, I will demonstrate theoretical approaches that help describe how cognitive and behavioral task implementations emerge from structure in neural populations and from biologically plausible learning rules. First, I will introduce an analytic theory that connects geometric structures that arise from neural responses (i.e., neural manifolds) to the neural population’s efficiency in implementing a task. In particular, this theory describes how easy or hard it is to discriminate between object categories based on the underlying neural manifolds’ structural properties. Next, I will describe how such methods can, in fact, open the ‘black box’ of neuronal networks, by showing how we can understand a) the role of network motifs in task implementation in neural networks and b) the role of neural noise in adversarial robustness in vision and audition. Finally, I will discuss my recent efforts to develop biologically plausible learning rules for neuronal networks, inspired by recent experimental findings in synaptic plasticity. By extending our mathematical toolkit for analyzing representations and learning rules underlying complex neuronal networks, I hope to contribute toward the long-term challenge of understanding the neuronal basis of behaviors.
What does the primary visual cortex tell us about object recognition?
Object recognition relies on the complex visual representations in cortical areas at the top of the ventral stream hierarchy. While these are thought to be derived from low-level stages of visual processing, this has not been shown, yet. Here, I describe the results of two projects exploring the contributions of primary visual cortex (V1) processing to object recognition using artificial neural networks (ANNs). First, we developed hundreds of ANN-based V1 models and evaluated how their single neurons approximate those in the macaque V1. We found that, for some models, single neurons in intermediate layers are similar to their biological counterparts, and that the distributions of their response properties approximately match those in V1. Furthermore, we observed that models that better matched macaque V1 were also more aligned with human behavior, suggesting that object recognition is derived from low-level. Motivated by these results, we then studied how an ANN’s robustness to image perturbations relates to its ability to predict V1 responses. Despite their high performance in object recognition tasks, ANNs can be fooled by imperceptibly small, explicitly crafted perturbations. We observed that ANNs that better predicted V1 neuronal activity were also more robust to adversarial attacks. Inspired by this, we developed VOneNets, a new class of hybrid ANN vision models. Each VOneNet contains a fixed neural network front-end that simulates primate V1 followed by a neural network back-end adapted from current computer vision models. After training, VOneNets were substantially more robust, outperforming state-of-the-art methods on a set of perturbations. While current neural network architectures are arguably brain-inspired, these results demonstrate that more precisely mimicking just one stage of the primate visual system leads to new gains in computer vision applications and results in better models of the primate ventral stream and object recognition behavior.
Stress deceleration theory: chronic adolescent stress exposure results in decelerated neurobehavioral maturation
Normative development in adolescence indicates that the prefrontal cortex is still under development thereby unable to exert efficient top-down inhibitory control on subcortical regions such as the basolateral amygdala and the nucleus accumbens. This imbalance in the developmental trajectory between cortical and subcortical regions is implicated in expression of the prototypical impulsive, compulsive, reward seeking and risk-taking adolescent behavior. Here we demonstrate that a chronic mild unpredictable stress procedure during adolescence in male Wistar rats arrests the normal behavioral maturation such that they continue to express adolescent-like impulsive, hyperactive, and compulsive behaviors into late adulthood. This arrest in behavioral maturation is associated with the hypoexcitability of prelimbic cortex (PLC) pyramidal neurons and reduced PLC-mediated synaptic glutamatergic control of BLA and nucleus accumbens core (NAcC) neurons that lasts late into adulthood. At the same time stress exposure in adolescence results in the hyperexcitability of the BLA pyramidal neurons sending stronger glutamatergic projections to the NAcC. Chemogenetic reversal of the PLC hypoexcitability decreased compulsivity and improved the expression of goal-directed behavior in rats exposed to stress during adolescence, suggesting a causal role for PLC hypoexcitability in this stress-induced arrested behavioral development. (https://www.biorxiv.org/content/10.1101/2021.11.21.469381v1.abstract)
Distance-tuned neurons drive specialized path integration calculations in medial entorhinal cortex
During navigation, animals estimate their position using path integration and landmarks, engaging many brain areas. Whether these areas follow specialized or universal cue integration principles remains incompletely understood. We combine electrophysiology with virtual reality to quantify cue integration across thousands of neurons in three navigation-relevant areas: primary visual cortex (V1), retrosplenial cortex (RSC), and medial entorhinal cortex (MEC). Compared with V1 and RSC, path integration influences position estimates more in MEC, and conflicts between path integration and landmarks trigger remapping more readily. Whereas MEC codes position prospectively, V1 codes position retrospectively, and RSC is intermediate between the two. Lowered visual contrast increases the influence of path integration on position estimates only in MEC. These properties are most pronounced in a population of MEC neurons, overlapping with grid cells, tuned to distance run in darkness. These results demonstrate the specialized role that path integration plays in MEC compared with other navigation-relevant cortical areas.
Human memory: mathematical models and experiments
I will present my recent work on mathematical modeling of human memory. I will argue that memory recall of random lists of items is governed by the universal algorithm resulting in the analytical relation between the number of items in memory and the number of items that can be successfully recalled. The retention of items in memory on the other hand is not universal and differs for different types of items being remembered, in particular retention curves for words and sketches is different even when sketches are made to only carry information about an object being drawn. I will discuss the putative reasons for these observations and introduce the phenomenological model predicting retention curves.
NMC4 Short Talk: Novel population of synchronously active pyramidal cells in hippocampal area CA1
Hippocampal pyramidal cells have been widely studied during locomotion, when theta oscillations are present, and during short wave ripples at rest, when replay takes place. However, we find a subset of pyramidal cells that are preferably active during rest, in the absence of theta oscillations and short wave ripples. We recorded these cells using two-photon imaging in dorsal CA1 of the hippocampus of mice, during a virtual reality object location recognition task. During locomotion, the cells show a similar level of activity as control cells, but their activity increases during rest, when this population of cells shows highly synchronous, oscillatory activity at a low frequency (0.1-0.4 Hz). In addition, during both locomotion and rest these cells show place coding, suggesting they may play a role in maintaining a representation of the current location, even when the animal is not moving. We performed simultaneous electrophysiological and calcium recordings, which showed a higher correlation of activity between the LFO and the hippocampal cells in the 0.1-0.4 Hz low frequency band during rest than during locomotion. However, the relationship between the LFO and calcium signals varied between electrodes, suggesting a localized effect. We used the Allen Brain Observatory Neuropixels Visual Coding dataset to further explore this. These data revealed localised low frequency oscillations in CA1 and DG during rest. Overall, we show a novel population of hippocampal cells, and a novel oscillatory band of activity in hippocampus during rest.
NMC4 Short Talk: What can deep reinforcement learning tell us about human motor learning and vice-versa ?
In the deep reinforcement learning (RL) community, motor control problems are usually approached from a reward-based learning perspective. However, humans are often believed to learn motor control through directed error-based learning. Within this learning setting, the control system is assumed to have access to exact error signals and their gradients with respect to the control signal. This is unlike reward-based learning, in which errors are assumed to be unsigned, encoding relative successes and failures. Here, we try to understand the relation between these two approaches, reward- and error- based learning, and ballistic arm reaches. To do so, we test canonical (deep) RL algorithms on a well-known sensorimotor perturbation in neuroscience: mirror-reversal of visual feedback during arm reaching. This test leads us to propose a potentially novel RL algorithm, denoted as model-based deterministic policy gradient (MB-DPG). This RL algorithm draws inspiration from error-based learning to qualitatively reproduce human reaching performance under mirror-reversal. Next, we show MB-DPG outperforms the other canonical (deep) RL algorithms on a single- and a multi- target ballistic reaching task, based on a biomechanical model of the human arm. Finally, we propose MB-DPG may provide an efficient computational framework to help explain error-based learning in neuroscience.
Refuting the unfolding-argument on the irrelevance of causal structure to consciousness
I will build from Niccolo's discussion of the Blockhead argument to argue that having an FeedForward Network (FN) responding like an recurrent network (RN) in a consciousness experiment is not enough to convince us the two are the same with regards to the posession of mental states and conscious experience. I will then argue that a robust functional equivalence between FFN and RN is akso not supported by the mathematical work on the Universal Approximator theorem, and is also unlikely to hold, as a conjecture, given data in cognitive neuroscience; I will argue that an equivalence of RN and FFN may only apply to static functions between input/output layers and not to the temporal patterns or to the network's reactions to structural perturbations. Finally, I review data indicating that consciousness has functional characteristics, such as a flexible control of behavior, and that cognitive/brain dynamics reveal interacting top-down and bottom-up processes, which are necessary for the mediation of such control processes.
Consistency of Face Identity Processing: Basic & Translational Research
Previous work looking at individual differences in face identity processing (FIP) has found that most commonly used lab-based performance assessments are unfortunately not sufficiently sensitive on their own for measuring performance in both the upper and lower tails of the general population simultaneously. So more recently, researchers have begun incorporating multiple testing procedures into their assessments. Still, though, the growing consensus seems to be that at the individual level, there is quite a bit of variability between test scores. The overall consequence of this is that extreme scores will still occur simply by chance in large enough samples. To mitigate this issue, our recent work has developed measures of intra-individual FIP consistency to refine selection of those with superior abilities (i.e. from the upper tail). For starters, we assessed consistency of face matching and recognition in neurotypical controls, and compared them to a sample of SRs. In terms of face matching, we demonstrated psychophysically that SRs show significantly greater consistency than controls in exploiting spatial frequency information than controls. Meanwhile, we showed that SRs’ recognition of faces is highly related to memorability for identities, yet effectively unrelated among controls. So overall, at the high end of the FIP spectrum, consistency can be a useful tool for revealing both qualitative and quantitative individual differences. Finally, in conjunction with collaborators from the Rheinland-Pfalz Police, we developed a pair of bespoke work samples to get bias-free measures of intraindividual consistency in current law enforcement personnel. Officers with higher composite scores on a set of 3 challenging FIP tests tended to show higher consistency, and vice versa. Overall, this suggests that not only is consistency a reasonably good marker of superior FIP abilities, but could present important practical benefits for personnel selection in many other domains of expertise.
Target detection in the natural world
Animal sensory systems are optimally adapted to those features typically encountered in natural surrounds, thus allowing neurons that have a limited bandwidth to encode almost impossibly large input ranges. Importantly, natural scenes are not random, and peripheral visual systems have therefore evolved to reduce the predictable redundancy. The vertebrate visual cortex is also optimally tuned to the spatial statistics of natural scenes, but much less is known about how the insect brain responds to these. We are redressing this deficiency using several techniques. Olga Dyakova uses exquisite image manipulation to give natural images unnatural image statistics, or vice versa. Marissa Holden then uses these images as stimuli in electrophysiological recordings of neurons in the fly optic lobes, to see how the brain codes for the statistics typically encountered in natural scenes, and Olga Dyakova measures the behavioral optomotor response on our trackball set-up.
Representation transfer and signal denoising through topographic modularity
To prevail in a dynamic and noisy environment, the brain must create reliable and meaningful representations from sensory inputs that are often ambiguous or corrupt. Since only information that permeates the cortical hierarchy can influence sensory perception and decision-making, it is critical that noisy external stimuli are encoded and propagated through different processing stages with minimal signal degradation. Here we hypothesize that stimulus-specific pathways akin to cortical topographic maps may provide the structural scaffold for such signal routing. We investigate whether the feature-specific pathways within such maps, characterized by the preservation of the relative organization of cells between distinct populations, can guide and route stimulus information throughout the system while retaining representational fidelity. We demonstrate that, in a large modular circuit of spiking neurons comprising multiple sub-networks, topographic projections are not only necessary for accurate propagation of stimulus representations, but can also help the system reduce sensory and intrinsic noise. Moreover, by regulating the effective connectivity and local E/I balance, modular topographic precision enables the system to gradually improve its internal representations and increase signal-to-noise ratio as the input signal passes through the network. Such a denoising function arises beyond a critical transition point in the sharpness of the feed-forward projections, and is characterized by the emergence of inhibition-dominated regimes where population responses along stimulated maps are amplified and others are weakened. Our results indicate that this is a generalizable and robust structural effect, largely independent of the underlying model specificities. Using mean-field approximations, we gain deeper insight into the mechanisms responsible for the qualitative changes in the system’s behavior and show that these depend only on the modular topographic connectivity and stimulus intensity. The general dynamical principle revealed by the theoretical predictions suggest that such a denoising property may be a universal, system-agnostic feature of topographic maps, and may lead to a wide range of behaviorally relevant regimes observed under various experimental conditions: maintaining stable representations of multiple stimuli across cortical circuits; amplifying certain features while suppressing others (winner-take-all circuits); and endow circuits with metastable dynamics (winnerless competition), assumed to be fundamental in a variety of tasks.
Spiking Neural networks as Universal Function Approximators - SNUFA 2021
Like last year this online workshop brings together researchers in the field to present their work and discuss ways of translating these findings into a better understanding of neural circuits. Topics include artificial and biologically plausible learning algorithms and the dissection of trained spiking circuits toward understanding neural processing. We have a manageable number of talks with ample time for discussions. This year’s executive committee comprises Chiara Bartolozzi, Sander Bohté, Dan Goodman, and Friedemann Zenke.
A universal probabilistic spike count model reveals ongoing modulation of neural variability in head direction cell activity in mice
Neural responses are variable: even under identical experimental conditions, single neuron and population responses typically differ from trial to trial and across time. Recent work has demonstrated that this variability has predictable structure, can be modulated by sensory input and behaviour, and bears critical signatures of the underlying network dynamics and computations. However, current methods for characterising neural variability are primarily geared towards sensory coding in the laboratory: they require trials with repeatable experimental stimuli and behavioural covariates. In addition, they make strong assumptions about the parametric form of variability, rely on assumption-free but data-inefficient histogram-based approaches, or are altogether ill-suited for capturing variability modulation by covariates. Here we present a universal probabilistic spike count model that eliminates these shortcomings. Our method uses scalable Bayesian machine learning techniques to model arbitrary spike count distributions (SCDs) with flexible dependence on observed as well as latent covariates. Without requiring repeatable trials, it can flexibly capture covariate-dependent joint SCDs, and provide interpretable latent causes underlying the statistical dependencies between neurons. We apply the model to recordings from a canonical non-sensory neural population: head direction cells in the mouse. We find that variability in these cells defies a simple parametric relationship with mean spike count as assumed in standard models, its modulation by external covariates can be comparably strong to that of the mean firing rate, and slow low-dimensional latent factors explain away neural correlations. Our approach paves the way to understanding the mechanisms and computations underlying neural variability under naturalistic conditions, beyond the realm of sensory coding with repeatable stimuli.
CrossTalk: Conversations at the Intersection of Science and Art
Anjan Chatterjee is a Professor of Neurology, Psychology, and Architecture and the founding Director of the Penn Center for Neuroaesthetics. His research explores the field of neuroaesthetics: how our brain experiences and responds to art. Lucas Kelly is a renowned visual artist, with work featured across several solo and group exhibitions, most notably in the survey of abstract painting “The Painted World” at PS1 Museum of Modern Art. As the inaugural Artist in Residence for the Penn Center for Neuroaesthetics, Lucas has collaborated with Anjan on a forthcoming exhibition, considering the emotions involved in aesthetic engagement informed by research. This event will feature a moderated conversation between Anjan and Lucas, discussing topics at the intersection of neuroscience and experience of visual art.
Physical Computation in Insect Swarms
Our world is full of living creatures that must share information to survive and reproduce. As humans, we easily forget how hard it is to communicate within natural environments. So how do organisms solve this challenge, using only natural resources? Ideas from computer science, physics and mathematics, such as energetic cost, compression, and detectability, define universal criteria that almost all communication systems must meet. We use insect swarms as a model system for identifying how organisms harness the dynamics of communication signals, perform spatiotemporal integration of these signals, and propagate those signals to neighboring organisms. In this talk I will focus on two types of communication in insect swarms: visual communication, in which fireflies communicate over long distances using light signals, and chemical communication, in which bees serve as signal amplifiers to propagate pheromone-based information about the queen’s location.
Understanding the Assessment of Spatial Neglect and its Treatment Using Prism Adaptation Training
Spatial neglect is a syndrome that is most frequently associated with damage to the right hemisphere, although damage to the left hemisphere can also result in signs of spatial neglect. It is characterised by absent or deficient awareness of the contralesional side of space. The screening and diagnosis of spatial neglect lacks a universal gold standard, but is usually achieved by using various modes of assessment. Spatial neglect is also difficult to treat, although prism adaptation training (PAT) has in the past reportedly showed some promise. This seminar will include highlights from a series of studies designed to identify knowledge gaps, and will suggest ways in which these can be bridged. The first study was conducted to identify and quantify clinicians’ use of assessment tools for spatial neglect, finding that several different tools are in use, but that there is an emerging consensus and appetite for harmonisation. The second study included PAT, and sought to uncover whether PAT can improve engagement in recommended therapy in order to improve the outcomes of stroke survivors with spatial neglect. The final study, a systematic review and meta-analysis, sought to investigate the scientific efficacy (rather than clinical effectiveness) of PAT, identifying several knowledge gaps in the existing literature and a need for a new approach in the study of PAT in the clinical setting.
Beyond the binding problem: From basic affordances to symbolic thought
Human cognitive abilities seem qualitatively different from the cognitive abilities of other primates, a difference Penn, Holyoak, and Povinelli (2008) attribute to role-based relational reasoning—inferences and generalizations based on the relational roles to which objects (and other relations) are bound, rather than just the features of the objects themselves. Role-based relational reasoning depends on the ability to dynamically bind arguments to relational roles. But dynamic binding cannot be sufficient for relational thinking: Some non-human animals solve the dynamic binding problem, at least in some domains; and many non-human species generalize affordances to completely novel objects and scenes, a kind of universal generalization that likely depends on dynamic binding. If they can solve the dynamic binding problem, then why can they not reason about relations? What are they missing? I will present simulations with the LISA model of analogical reasoning (Hummel & Holyoak, 1997, 2003) suggesting that the missing pieces are multi-role integration (the capacity to combine multiple role bindings into complete relations) and structure mapping (the capacity to map different systems of role bindings onto one another). When LISA is deprived of either of these capacities, it can still generalize affordances universally, but it cannot reason symbolically; granted both abilities, LISA enjoys the full power of relational (symbolic) thought. I speculate that one reason it may have taken relational reasoning so long to evolve is that it required evolution to solve both problems simultaneously, since neither multi-role integration nor structure mapping appears to confer any adaptive advantage over simple role binding on its own.
Growing in flows: from evolutionary dynamics to microbial jets
Biological systems can self-organize in complex structures, able to evolve and adapt to widely varying environmental conditions. Despite the importance of fluid flow for transporting and organizing populations, few laboratory systems exist to systematically investigate the impact of advection on their spatial evolutionary dynamics. In this talk, I will discuss how we can address this problem by studying the morphology and genetic spatial structure of microbial colonies growing on the surface of a viscous substrate. When grown on a liquid, I will show that S. cerevisiae (baker’s yeast) can behave like “active matter” and collectively generate a fluid flow many times larger than the unperturbed colony expansion speed, which in turn produces mechanical stresses and fragmentation of the initial colony. Combining laboratory experiments with numerical modeling, I will demonstrate that the coupling between metabolic activity and hydrodynamic flows can produce positive feedbacks and drive preferential growth phenomena leading to the formation of microbial jets. Our work provides rich opportunities to explore the interplay between hydrodynamics, growth and competition within a versatile system.
How polymer-loop-extruding motors shape chromosomes
Chromosomes are extremely long, active polymers that are spatially organized across multiple scales to promote cellular functions, such as gene transcription and genetic inheritance. During each cell cycle, chromosomes are dramatically compacted as cells divide and dynamically reorganized into less compact, spatiotemporally patterned structures after cell division. These activities are facilitated by DNA/chromatin-binding protein motors called SMC complexes. Each of these motors can perform a unique activity known as “loop extrusion,” in which the motor binds the DNA/chromatin polymer, reels in the polymer fiber, and extrudes it as a loop. Using simulations and theory, I show how loop-extruding motors can collectively compact and spatially organize chromosomes in different scenarios. First, I show that loop-extruding complexes can generate sufficient compaction for cell division, provided that loop-extrusion satisfies stringent physical requirements. Second, while loop-extrusion alone does not uniquely spatially pattern the genome, interactions between SMC complexes and protein “boundary elements” can generate patterns that emerge in the genome after cell division. Intriguingly, these “boundary elements” are not necessarily stationary, which can generate a variety of patterns in the neighborhood of transcriptionally active genes. These predictions, along with supporting experiments, show how SMC complexes and other molecular machinery, such as RNA polymerase, can spatially organize the genome. More generally, this work demonstrates both the versatility of the loop extrusion mechanism for chromosome functional organization and how seemingly subtle microscopic effects can emerge in the spatiotemporal structure of nonequilibrium polymers.
PiVR: An affordable and versatile closed-loop platform to study unrestrained sensorimotor behavior
PiVR is a system that allows experimenters to immerse small animals into virtual realities. The system tracks the position of the animal and presents light stimulation according to predefined rules, thus creating a virtual landscape in which the animal can behave. By using optogenetics, we have used PiVR to present fruit fly larvae with virtual olfactory realities, adult fruit flies with a virtual gustatory reality and zebrafish larvae with a virtual light gradient. PiVR operates at high temporal resolution (70Hz) with low latencies (<30 milliseconds) while being affordable (<US$500) and easy to build (<6 hours). Through extensive documentation (www.PiVR.org), this tool was designed to be accessible to a wide public, from high school students to professional researchers studying systems neuroscience in academia.
The Challenge and Opportunities of Mapping Cortical Layer Activity and Connectivity with fMRI
In this talk I outline the technical challenges and current solutions to layer fMRI. Specifically, I describe our acquisition strategies for maximizing resolution, spatial coverage, time efficiency as well as, perhaps most importantly, vascular specificity. Novel applications from our group, including mapping feedforward and feedback connections to M1 during task and sensory input modulation and S1 during a sensory prediction task are be shown. Layer specific activity in dorsal lateral prefrontal cortex during a working memory task is also demonstrated. Additionally, I’ll show preliminary work on mapping whole brain layer-specific resting state connectivity and hierarchy.
Agency through Physical Lenses
I will offer a broad-brush account of what explains the emergence of agents from a physics perspective, what sorts of conditions have to be in place for them to arise, and the essential features of agents when they are viewed through the lenses of physics. One implication will be a tight link to informational asymmetries associated with the thermodynamic gradient. Another will be a reversal of the direction of explanation from the one that is usually assumed in physical discussions. In in an evolved system, while it is true in some sense that the macroscopic behavior is the way it is because of the low-level dynamics, there is another sense in which the low-level dynamics is the way that it is because of the high-level behavior it supports. (More precisely and accurately, the constraints on the configuration of its components that define system as the kind of system it is are the way they are to exploit the low-level dynamics to produce the emergent behavior.) Another will be some insight into what might make human agency special.
Flexible codes and loci of visual working memory
Neural correlates of visual working memory have been found in early visual, parietal, and prefrontal regions. These findings have spurred fruitful debate over how and where in the brain memories might be represented. Here, I will present data from multiple experiments to demonstrate how a focus on behavioral requirements can unveil a more comprehensive understanding of the visual working memory system. Specifically, items in working memory must be maintained in a highly robust manner, resilient to interference. At the same time, storage mechanisms must preserve a high degree of flexibility in case of changing behavioral goals. Several examples will be explored in which visual memory representations are shown to undergo transformations, and even shift their cortical locus alongside their coding format based on specifics of the task.
Adversarial-inspired autoencoder framework for salient sensory feature extraction
Bernstein Conference 2024
Code reversal between stimulus processing and fading memories in primate V1
Bernstein Conference 2024
The cost of behavioral flexibility: a modeling study of reversal learning using a spiking neural network
Bernstein Conference 2024
Quantifying the learning dynamics of single subjects in a reversal learning task with change point analysis
Bernstein Conference 2024
'Reusers' and 'Unlearners' display distinct effects of forgetting on reversal learning in neural networks
Bernstein Conference 2024
Adversarial learning of plasticity rules
COSYNE 2022
Cellular mechanisms of dorsal horn neurons shape the functional states of nociceptive circuits
COSYNE 2022
Computational strategies and neural correlates of probabilistic reversal learning in mice
COSYNE 2022
How does the dorsal striatum contribute to active choice rejection?
COSYNE 2022
Universality of modular correlated networks across the developing neocortex
COSYNE 2022
Universality of modular correlated networks across the developing neocortex
COSYNE 2022
Arousal dynamics: diverse measurements of a universal manifold
COSYNE 2023
Brain-wide, specialized and state-dependent cortical encoding of reward, value and action switching during reversal learning
COSYNE 2023
Cortical-bulbar feedback supports behavioral flexibility during rule reversal
COSYNE 2023
Human Neural Dynamics of Elements in Natural Conversation – A Deep Learning Approach
COSYNE 2023
Network dimensions alter reversal learning strategies
COSYNE 2023
Broken time reversal symmetry in visual motion detection
COSYNE 2025
Enhancing Vision Robustness to Adversarial Attacks through Foveal-Peripheral and Saccadic Mechanisms
COSYNE 2025
Serotonergic activity in the dorsal raphe nucleus through the lens of unsupervised learning
COSYNE 2025
Serotonergic neurons in the dorsal raphe regulate visual attention
COSYNE 2025
A universal power law in visual adaptation: balancing representation fidelity and metabolic cost
COSYNE 2025
Universal scaling of intrinsic timescales across the whole mouse brain
COSYNE 2025
Acute and chronic treatment with the nitric oxide synthase inhibitor agmatine stimulates serotonergic neurons in the rat dorsal raphe nucleus
FENS Forum 2024
An alternative to treat depression-like behaviors: The effects of S-mecamylamine in the dorsal raphe nucleus
FENS Forum 2024
Anatomically heterogeneous pyramidal cells in supragranular layers of the dorsal cortex show the surface-to-deep firing frequency increase during natural sleep
FENS Forum 2024
Asymmetrical modulations of decision and movement speeds during self-paced foraging reveal the dorsal striatum selective contribution to effort sensitivity
FENS Forum 2024
Behavioural control training promotes antidepressant/anxiolytic-like reversal of chronic stress-induced behavioural deficits: Endocannabinoidergic and prolactinergic mechanisms
FENS Forum 2024
Brain areas that constitute ventral pathway circuits are independently able to induce enhancement in object memory and cause reversal in object memory deficit
FENS Forum 2024
Brainstem control of a state-dependent motor response reversal in Xenopus laevis tadpoles
FENS Forum 2024
Caspr2 autoantibody pathology is mediated by altered excitability of sensory dorsal root ganglia
FENS Forum 2024
Contribution of anterodorsal thalamic neurons to orientation coding and their dysfunction in a novel virus-based tauopathy mouse model
FENS Forum 2024
Control of motivated reward and aversion behaviors by the laterodorsal tegmental area
FENS Forum 2024
Deletion of TRPV1 attenuates P2X3-increased calcium in dorsal root ganglion neurons innervating the ischemic limb muscle
FENS Forum 2024
Depressive and anxious phenotype correlates with functional changes in the ventromedial prefrontal cortex - dorsal raphe nucleus circuit in female mice with alpha-synucleinopathy
FENS Forum 2024
Distributed memory engrams underlie flexible and versatile neural representations
FENS Forum 2024
Dorsal hippocampal CA3-CA1 long-term plasticity and the effect of aerobic exercise in anaesthetised and awake sub-chronic phencyclidine rat model for schizophrenia
FENS Forum 2024
Dorsal raphe nuclei/ventrolateral periaqueductal grey and cerebellar fastigial nucleus interactions modulate danger response during fear learning
FENS Forum 2024
Dorsal and median raphe neuronal firing dynamics characterized by non-linear measures
FENS Forum 2024
Dorsal-ventral hippocampal coding of emotional experiences
FENS Forum 2024
Electrical microstimulation of non-human primate mediodorsal thalamus during functional neuroimaging impacts dorsal anterior cingulate cortex
FENS Forum 2024