← Back

Scientific Practice

Topic spotlight
TopicWorld Wide

scientific practice

Discover seminars, jobs, and research tagged with scientific practice across World Wide.
3 curated items3 Seminars
Updated almost 4 years ago
3 items · scientific practice
3 results
SeminarNeuroscienceRecording

What is Cognitive Neuropsychology Good For? An Unauthorized Biography

Alfonso Caramazza
Cognitive Neuropsychology Laboratory, Harvard University, USA; Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy
Feb 22, 2022

Abstract: There is no doubt that the study of brain damaged individuals has contributed greatly to our understanding of the mind/brain. Within this broad approach, cognitive neuropsychology accentuates the cognitive dimension: it investigates the structure and organization of perceptual, motor, cognitive, and language systems – prerequisites for understanding the functional organization of the brain – through the analysis of their dysfunction following brain damage. Significant insights have come specifically from this paradigm. But progress has been slow and enthusiasm for this approach has waned somewhat in recent years, and the use of existing findings to constrain new theories has also waned. What explains the current diminished status of cognitive neuropsychology? One reason may be failure to calibrate expectations about the effective contribution of different subfields of the study of the mind/brain as these are determined by their natural peculiarities – such factors as the types of available observations and their complexity, opportunity of access to such observations, the possibility of controlled experimentation, and the like. Here, I also explore the merits and limitations of cognitive neuropsychology, with particular focus on the role of intellectual, pragmatic, and societal factors that determine scientific practice within the broader domains of cognitive science/neuroscience. I conclude on an optimistic note about the continuing unique importance of cognitive neuropsychology: although limited to the study of experiments of nature, it offers a privileged window into significant aspects of the mind/brain that are not easily accessible through other approaches. Biography: Alfonso Caramazza's research has focussed extensively on how words and their meanings are represented in the brain. His early pioneering studies helped to reformulate our thinking about Broca's aphasia (not limited to production) and formalised the logic of patient-based neuropsychology. More recently he has been instrumental in reconsidering popular claims about embodied cognition.

SeminarNeuroscienceRecording

A Functional Approach to Analogical Reasoning in Scientific Practice

Yafeng Shan
University of Kent
Oct 20, 2021

The talk argues for a new approach to analysing analogical reasoning in scientific practice. Traditionally, philosophers of science tend to analyse analogical reasoning in either a top-down way or a bottom-up way. Examples of top-down approaches include Mary Hesse’s seminal work (1963) and Paul Bartha’s articulation model (2010), while most popular bottom-up approach is John Norton’s material approach (2018). I will address the problems of these traditional approaches and introduce an alternative approach, which is motivated by my exemplar-based approach to the history of science, defended in my recent book (2020).

SeminarOpen SourceRecording

Autopilot v0.4.0 - Distributing development of a distributed experimental framework

Jonny Saunders
University of Oregon
Sep 28, 2021

Autopilot is a Python framework for performing complex behavioral neuroscience experiments by coordinating a swarm of Raspberry Pis. It was designed to not only give researchers a tool that allows them to perform the hardware-intensive experiments necessary for the next generation of naturalistic neuroscientific observation, but also to make it easier for scientists to be good stewards of the human knowledge project. Specifically, we designed Autopilot as a framework that lets its users contribute their technical expertise to a cumulative library of hardware interfaces and experimental designs, and produce data that is clean at the time of acquisition to lower barriers to open scientific practices. As autopilot matures, we have been progressively making these aspirations a reality. Currently we are preparing the release of Autopilot v0.4.0, which will include a new plugin system and wiki that makes use of semantic web technology to make a technical and contextual knowledge repository. By combining human readable text and semantic annotations in a wiki that makes contribution as easy as possible, we intend to make a communal knowledge system that gives a mechanism for sharing the contextual technical knowledge that is always excluded from methods sections, but is nonetheless necessary to perform cutting-edge experiments. By integrating it with Autopilot, we hope to make a first of its kind system that allows researchers to fluidly blend technical knowledge and open source hardware designs with the software necessary to use them. Reciprocally, we also hope that this system will support a kind of deep provenance that makes abstract "custom apparatus" statements in methods sections obsolete, allowing the scientific community to losslessly and effortlessly trace a dataset back to the code and hardware designs needed to replicate it. I will describe the basic architecture of Autopilot, recent work on its community contribution ecosystem, and the vision for the future of its development.