← Back

Sense of Time

Topic spotlight
TopicWorld Wide

sense of time

Discover seminars, jobs, and research tagged with sense of time across World Wide.
3 curated items3 Seminars
Updated over 2 years ago
3 items · sense of time
3 results
SeminarNeuroscienceRecording

The Effects of Movement Parameters on Time Perception

Keri Anne Gladhill
Florida State University, Tallahassee, Florida.
May 30, 2023

Mobile organisms must be capable of deciding both where and when to move in order to keep up with a changing environment; therefore, a strong sense of time is necessary, otherwise, we would fail in many of our movement goals. Despite this intrinsic link between movement and timing, only recently has research begun to investigate the interaction. Two primary effects that have been observed include: movements biasing time estimates (i.e., affecting accuracy) as well as making time estimates more precise. The goal of this presentation is to review this literature, discuss a Bayesian cue combination framework to explain these effects, and discuss the experiments I have conducted to test the framework. The experiments herein include: a motor timing task comparing the effects of movement vs non-movement with and without feedback (Exp. 1A & 1B), a transcranial magnetic stimulation (TMS) study on the role of the supplementary motor area (SMA) in transforming temporal information (Exp. 2), and a perceptual timing task investigating the effect of noisy movement on time perception with both visual and auditory modalities (Exp. 3A & 3B). Together, the results of these studies support the Bayesian cue combination framework, in that: movement improves the precision of time perception not only in perceptual timing tasks but also motor timing tasks (Exp. 1A & 1B), stimulating the SMA appears to disrupt the transformation of temporal information (Exp. 2), and when movement becomes unreliable or noisy there is no longer an improvement in precision of time perception (Exp. 3A & 3B). Although there is support for the proposed framework, more studies (i.e., fMRI, TMS, EEG, etc.) need to be conducted in order to better understand where and how this may be instantiated in the brain; however, this work provides a starting point to better understanding the intrinsic connection between time and movement

SeminarNeuroscience

Visualising time in the human brain

Jennifer Coull
LNC, Aix, Marseille Université & CNRS
May 16, 2022

We all have a sense of time. Yet it is a particularly intangible sensation. So how is our “sense” of time represented in the brain? Functional neuroimaging studies have consistently identified a network of regions, including Supplementary Motor Area and basal ganglia, that are activated when participants make judgements about the duration of currently unfolding events. In parallel, left parietal cortex and cerebellum are activated when participants predict when future events are likely to occur. These structures are activated by temporal processing even when task goals are purely perceptual. So why should the perception of time be represented in regions of the brain that have more traditionally been implicated in motor function? One possibility is that we learn about time through action. In other words, action could provide the functional scaffolding for learning about time in childhood, explaining why it has come to be represented in motor circuits of the adult brain.

SeminarNeuroscienceRecording

A sense of time in human evolution

Alexandra Rosati
University of Michigan
Oct 22, 2020

What psychological mechanisms do primates use to engage in self-control, and what is the ultimate function of these skills? I will argue that a suite of decision-making capacities, including choices about the timing of benefits, evolved in the context of foraging behaviors and vary with ecological complexity across species. Then, I will examine how these foraging capacities can be generalized to solve novel problems posing temporal costs that are important for humans, such as cooking food, and can therefore underpin evolutionary transitions in behavior. Finally, I will present work testing the hypothesis that a limited future time horizon constrains the expression of other complex abilities in nonhumans, explaining the emergence of human-unique forms of social cognition and behavior.