← Back

Sensorimotor Control

Topic spotlight
TopicWorld Wide

sensorimotor control

Discover seminars, jobs, and research tagged with sensorimotor control across World Wide.
9 curated items7 Seminars2 ePosters
Updated in 11 days
9 items · sensorimotor control
9 results
SeminarNeuroscience

sensorimotor control, mouvement, touch, EEG

Marieva Vlachou
Institut des Sciences du Mouvement Etienne Jules Marey, Aix-Marseille Université/CNRS, France
Dec 18, 2025

Traditionally, touch is associated with exteroception and is rarely considered a relevant sensory cue for controlling movements in space, unlike vision. We developed a technique to isolate and measure tactile involvement in controlling sliding finger movements over a surface. Young adults traced a 2D shape with their index finger under direct or mirror-reversed visual feedback to create a conflict between visual and somatosensory inputs. In this context, increased reliance on somatosensory input compromises movement accuracy. Based on the hypothesis that tactile cues contribute to guiding hand movements when in contact with a surface, we predicted poorer performance when the participants traced with their bare finger compared to when their tactile sensation was dampened by a smooth, rigid finger splint. The results supported this prediction. EEG source analyses revealed smaller current in the source-localized somatosensory cortex during sensory conflict when the finger directly touched the surface. This finding supports the hypothesis that, in response to mirror-reversed visual feedback, the central nervous system selectively gated task-irrelevant somatosensory inputs, thereby mitigating, though not entirely resolving, the visuo-somatosensory conflict. Together, our results emphasize touch’s involvement in movement control over a surface, challenging the notion that vision predominantly governs goal-directed hand or finger movements.

SeminarNeuroscience

Predictive processing in older adults: How does it shape perception and sensorimotor control?

Jutta Billino
JLU Giessen
Oct 30, 2023
SeminarNeuroscience

Measuring and modeling behavior to decode sensorimotor control

Mackenzie Matthis
Swiss Federal Institute of Technology, Lausanne (EPFL)
Jan 12, 2022
SeminarNeuroscienceRecording

Understanding sensorimotor control at global and local scales

Kelly Clancy
Mrsic-Flogel lab, Sainsbury Wellcome Centre
Mar 9, 2021

The brain is remarkably flexible, and appears to instantly reconfigure its processing depending on what’s needed to solve a task at hand: fMRI studies indicate that distal brain areas appear to fluidly couple and decouple with one another depending on behavioral context. But the structural architecture of the brain is comprised of long-range axonal projections that are relatively fixed by adulthood. How does the global dynamism evident in fMRI recordings manifest at a cellular level? To bridge the gap between the activity of single neurons and cortex-wide networks, we correlated electrophysiological recordings of individual neurons in primary visual (V1) and retrosplenial (RSP) associational cortex with activity across dorsal cortex, recorded simultaneously using widefield calcium imaging. We found that individual neurons in both cortical areas independently engaged in different distributed cortical networks depending on the animal’s behavioral state, suggesting that locomotion puts cortex into a more sensory driven mode relevant for navigation.

SeminarNeuroscienceRecording

Motor BMIs for probing sensorimotor control and parsing distributed learning

Amy Orsborn
University of Washington
Oct 8, 2020

Brain-machine interfaces (BMIs) change how the brain sends and receives information from the environment, opening new ways to probe brain function. For instance, motor BMIs allow us to precisely define and manipulate the sensorimotor loop which has enabled new insights into motor control and learning. In this talk, I’ll first present an example study where sensory-motor loop manipulations in BMI allowed us to probe feed-forward and feedback control mechanisms in ways that are not possible in the natural motor system. This study shed light on sensorimotor processing, and in turn led to state-of-the-art neural interface performance. I’ll then survey recent work that highlights the likelihood that BMIs, much like natural motor learning, engages multiple distributed learning mechanisms that can be carefully interrogated with BMI.

SeminarNeuroscienceRecording

Understanding sensorimotor control at global and local scales

Kelly Clancy
DeepMind
Oct 8, 2020

The brain is remarkably flexible, and appears to instantly reconfigure its processing depending on what’s needed to solve a task at hand: fMRI studies indicate that distal brain areas appear to fluidly couple and decouple with one another depending on behavioral context. We investigated how the brain coordinates its activity across areas to inform complex, top-down control behaviors. Animals were trained to perform a novel brain machine interface task to guide a visual cursor to a reward zone, using activity recorded with widefield calcium imaging. This allowed us to screen for cortical areas implicated in causal neural control of the visual object. Animals could decorrelate normally highly-correlated areas to perform the task, and used an explore-exploit search in neural activity space to discover successful strategies. Higher visual and parietal areas were more active during the task in expert animals. Single unit recordings targeted to these areas indicated that the sensory representation of an object was sensitive to an animal’s subjective sense of controlling it.

SeminarNeuroscience

Neural and computational principles of the processing of dynamic faces and bodies

Martin Giese
University of Tübingen
Jul 7, 2020

Body motion is a fundamental signal of social communication. This includes facial as well as full-body movements. Combining advanced methods from computer animation with motion capture in humans and monkeys, we synthesized highly-realistic monkey avatar models. Our face avatar is perceived by monkeys as almost equivalent to a real animal, and does not induce an ‘uncanny valley effect’, unlike all other previously used avatar models in studies with monkeys. Applying machine-learning methods for the control of motion style, we were able to investigate how species-specific shape and dynamic cues influence the perception of human and monkey facial expressions. Human observers showed very fast learning of monkey expressions, and a perceptual encoding of expression dynamics that was largely independent of facial shape. This result is in line with the fact that facial shape evolved faster than the neuromuscular control in primate phylogenesis. At the same time, it challenges popular neural network models of the recognition of dynamic faces that assume a joint encoding of facial shape and dynamics. We propose an alternative physiologically-inspired neural model that realizes such an orthogonal encoding of facial shape and expression from video sequences. As second example, we investigated the perception of social interactions from abstract stimuli, similar to the ones by Heider & Simmel (1944), and also from more realistic stimuli. We developed and validated a new generative model for the synthesis of such social interaction, which is based on a modification of human navigation model. We demonstrate that the recognition of such stimuli, including the perception of agency, can be accounted for by a relatively elementary physiologically-inspired hierarchical neural recognition model, that does not require the assumption of sophisticated inference mechanisms, as postulated by some cognitive theories of social recognition. Summarizing, this suggests that essential phenomena in social cognition might be accounted for by a small set of simple neural principles that can be easily implemented by cortical circuits. The developed technologies for stimulus control form the basis of electrophysiological studies that can verify specific neural circuits, as the ones proposed by our theoretical models.

ePoster

Dynamical Neural Computation in Predictive Sensorimotor Control

Yun Chen, Yiheng Zhang, He Cui

COSYNE 2023

ePoster

A model linking neural population activity to flexibility in sensorimotor control

Hari Teja Kalidindi, Frederic Crevecoeur

COSYNE 2025