← Back

Sensory Environment

Topic spotlight
TopicWorld Wide

sensory environment

Discover seminars, jobs, and research tagged with sensory environment across World Wide.
5 curated items4 Seminars1 ePoster
Updated over 2 years ago
5 items · sensory environment
5 results
SeminarNeuroscienceRecording

Are place cells just memory cells? Probably yes

Stefano Fusi
Columbia University, New York
Mar 21, 2023

Neurons in the rodent hippocampus appear to encode the position of the animal in physical space during movement. Individual ``place cells'' fire in restricted sub-regions of an environment, a feature often taken as evidence that the hippocampus encodes a map of space that subserves navigation. But these same neurons exhibit complex responses to many other variables that defy explanation by position alone, and the hippocampus is known to be more broadly critical for memory formation. Here we elaborate and test a theory of hippocampal coding which produces place cells as a general consequence of efficient memory coding. We constructed neural networks that actively exploit the correlations between memories in order to learn compressed representations of experience. Place cells readily emerged in the trained model, due to the correlations in sensory input between experiences at nearby locations. Notably, these properties were highly sensitive to the compressibility of the sensory environment, with place field size and population coding level in dynamic opposition to optimally encode the correlations between experiences. The effects of learning were also strongly biphasic: nearby locations are represented more similarly following training, while locations with intermediate similarity become increasingly decorrelated, both distance-dependent effects that scaled with the compressibility of the input features. Using virtual reality and 2-photon functional calcium imaging in head-fixed mice, we recorded the simultaneous activity of thousands of hippocampal neurons during virtual exploration to test these predictions. Varying the compressibility of sensory information in the environment produced systematic changes in place cell properties that reflected the changing input statistics, consistent with the theory. We similarly identified representational plasticity during learning, which produced a distance-dependent exchange between compression and pattern separation. These results motivate a more domain-general interpretation of hippocampal computation, one that is naturally compatible with earlier theories on the circuit's importance for episodic memory formation. Work done in collaboration with James Priestley, Lorenzo Posani, Marcus Benna, Attila Losonczy.

SeminarNeuroscienceRecording

What happens to our ability to perceive multisensory information as we age?

Fiona Newell
Trinity Collge Dublin
Jan 12, 2022

Our ability to perceive the world around us can be affected by a number of factors including the nature of the external information, prior experience of the environment, and the integrity of the underlying perceptual system. A particular challenge for the brain is to maintain a coherent perception from information encoded by the peripheral sensory organs whose function is affected by typical, developmental changes across the lifespan. Yet, how the brain adapts to the maturation of the senses, as well as experiential changes in the multisensory environment, is poorly understood. Over the past few years, we have used a range of multisensory tasks to investigate the role of ageing on the brain’s ability to merge sensory inputs. In particular, we have embedded an audio-visual task based on the sound-induced flash illusion (SIFI) into a large-scale, longitudinal study of ageing. Our findings support the idea that the temporal binding window (TBW) is modulated by age and reveal important individual differences in this TBW that may have clinical implications. However, our investigations also suggest the TWB is experience-dependent with evidence for both long and short term behavioural plasticity. An overview of these findings, including recent evidence on how multisensory integration may be associated with higher order functions, will be discussed.

SeminarNeuroscienceRecording

The collective behavior of the clonal raider ant: computations, patterns, and naturalistic behavior

Asaf Gal
University of Rockefeller, NYC
May 4, 2021

Colonies of ants and other eusocial insects are superorganisms, which perform sophisticated cognitive-like functions at the level of the group. In my talk I will review our efforts to establish the clonal raider ant Ooceraea biroi as a lab model system for the systematic study of the principles underlying collective information processing in ant colonies. I will use results from two separate projects to demonstrate the potential of this model system: In the first, we analyze the foraging behavior of the species, known as group raiding: a swift offensive response of a colony to the detection of a potential prey by a scout. By using automated behavioral tracking and detailed analysis we show that this behavior is closely related to the army ant mass raid, an iconic collective behavior in which hundreds of thousands of ants spontaneously leave the nest to go hunting, and that the evolutionary transition between the two can be explained by a change in colony size alone. In the second project, we study the emergence of a collective sensory response threshold in a colony. The sensory threshold is a fundamental computational primitive, observed across many biological systems. By carefully controlling the sensory environment and the social structure of the colonies we were able to show that it also appear in a collective context, and that it emerges out of a balance between excitatory and inhibitory interactions between ants. Furthermore, by using a mathematical model we predict that these two interactions can be mapped into known mechanisms of communication in ants. Finally, I will discuss the opportunities for understanding collective behavior that are opening up by the development of methods for neuroimaging and neurocontrol of our ants.

ePoster

Affective expectations are modulated by the interplay between visceral signals and uncertainty of the sensory environment

Alexandrina Vasilichi, Niia Nikolova, Peter Dayan, Micah Allen

FENS Forum 2024