Sensory
sensory representations
Computational Mechanisms of Predictive Processing in Brains and Machines
Predictive processing offers a unifying view of neural computation, proposing that brains continuously anticipate sensory input and update internal models based on prediction errors. In this talk, I will present converging evidence for the computational mechanisms underlying this framework across human neuroscience and deep neural networks. I will begin with recent work showing that large-scale distributed prediction-error encoding in the human brain directly predicts how sensory representations reorganize through predictive learning. I will then turn to PredNet, a popular predictive coding inspired deep network that has been widely used to model real-world biological vision systems. Using dynamic stimuli generated with our Spatiotemporal Style Transfer algorithm, we demonstrate that PredNet relies primarily on low-level spatiotemporal structure and remains insensitive to high-level content, revealing limits in its generalization capacity. Finally, I will discuss new recurrent vision models that integrate top-down feedback connections with intrinsic neural variability, uncovering a dual mechanism for robust sensory coding in which neural variability decorrelates unit responses, while top-down feedback stabilizes network dynamics. Together, these results outline how prediction error signaling and top-down feedback pathways shape adaptive sensory processing in biological and artificial systems.
The Brain Prize winners' webinar
This webinar brings together three leaders in theoretical and computational neuroscience—Larry Abbott, Haim Sompolinsky, and Terry Sejnowski—to discuss how neural circuits generate fundamental aspects of the mind. Abbott illustrates mechanisms in electric fish that differentiate self-generated electric signals from external sensory cues, showing how predictive plasticity and two-stage signal cancellation mediate a sense of self. Sompolinsky explores attractor networks, revealing how discrete and continuous attractors can stabilize activity patterns, enable working memory, and incorporate chaotic dynamics underlying spontaneous behaviors. He further highlights the concept of object manifolds in high-level sensory representations and raises open questions on integrating connectomics with theoretical frameworks. Sejnowski bridges these motifs with modern artificial intelligence, demonstrating how large-scale neural networks capture language structures through distributed representations that parallel biological coding. Together, their presentations emphasize the synergy between empirical data, computational modeling, and connectomics in explaining the neural basis of cognition—offering insights into perception, memory, language, and the emergence of mind-like processes.
Intrinsic Geometry of a Combinatorial Sensory Neural Code for Birdsong
Understanding the nature of neural representation is a central challenge of neuroscience. One common approach to this challenge is to compute receptive fields by correlating neural activity with external variables drawn from sensory signals. But these receptive fields are only meaningful to the experimenter, not the organism, because only the experimenter has access to both the neural activity and knowledge of the external variables. To understand neural representation more directly, recent methodological advances have sought to capture the intrinsic geometry of sensory driven neural responses without external reference. To date, this approach has largely been restricted to low-dimensional stimuli as in spatial navigation. In this talk, I will discuss recent work from my lab examining the intrinsic geometry of sensory representations in a model vocal communication system, songbirds. From the assumption that sensory systems capture invariant relationships among stimulus features, we conceptualized the space of natural birdsongs to lie on the surface of an n-dimensional hypersphere. We computed composite receptive field models for large populations of simultaneously recorded single neurons in the auditory forebrain and show that solutions to these models define convex regions of response probability in the spherical stimulus space. We then define a combinatorial code over the set of receptive fields, realized in the moment-to-moment spiking and non-spiking patterns across the population, and show that this code can be used to reconstruct high-fidelity spectrographic representations of natural songs from evoked neural responses. Notably, we find that topological relationships among combinatorial codewords directly mirror acoustic relationships among songs in the spherical stimulus space. That is, the time-varying pattern of co-activity across the neural population expresses an intrinsic representational geometry that mirrors the natural, extrinsic stimulus space. Combinatorial patterns across this intrinsic space directly represent complex vocal communication signals, do not require computation of receptive fields, and are in a form, spike time coincidences, amenable to biophysical mechanisms of neural information propagation.
Invariant neural subspaces maintained by feedback modulation
Sensory systems reliably process incoming stimuli in spite of changes in context. Most recent models accredit this context invariance to an extraction of increasingly complex sensory features in hierarchical feedforward networks. Here, we study how context-invariant representations can be established by feedback rather than feedforward processing. We show that feedforward neural networks modulated by feedback can dynamically generate invariant sensory representations. The required feedback can be implemented as a slow and spatially diffuse gain modulation. The invariance is not present on the level of individual neurons, but emerges only on the population level. Mechanistically, the feedback modulation dynamically reorients the manifold of neural activity and thereby maintains an invariant neural subspace in spite of contextual variations. Our results highlight the importance of population-level analyses for understanding the role of feedback in flexible sensory processing.
NMC4 Short Talk: Neurocomputational mechanisms of causal inference during multisensory processing in the macaque brain
Natural perception relies inherently on inferring causal structure in the environment. However, the neural mechanisms and functional circuits that are essential for representing and updating the hidden causal structure during multisensory processing are unknown. To address this, monkeys were trained to infer the probability of a potential common source from visual and proprioceptive signals on the basis of their spatial disparity in a virtual reality system. The proprioceptive drift reported by monkeys demonstrated that they combined historical information and current multisensory signals to estimate the hidden common source and subsequently updated both the causal structure and sensory representation. Single-unit recordings in premotor and parietal cortices revealed that neural activity in premotor cortex represents the core computation of causal inference, characterizing the estimation and update of the likelihood of integrating multiple sensory inputs at a trial-by-trial level. In response to signals from premotor cortex, neural activity in parietal cortex also represents the causal structure and further dynamically updates the sensory representation to maintain consistency with the causal inference structure. Thus, our results indicate how premotor cortex integrates historical information and sensory inputs to infer hidden variables and selectively updates sensory representations in parietal cortex to support behavior. This dynamic loop of frontal-parietal interactions in the causal inference framework may provide the neural mechanism to answer long-standing questions regarding how neural circuits represent hidden structures for body-awareness and agency.
The diachronic account of attentional selectivity
Many models of attention assume that attentional selection takes place at a specific moment in time which demarcates the critical transition from pre-attentive to attentive processing of sensory input. We argue that this intuitively appealing account is not only inaccurate, but has led to substantial conceptual confusion (to the point where some attention researchers offer to abandon the term ‘attention’ altogether). As an alternative, we offer a “diachronic” framework that describes attentional selectivity as a process that unfolds over time. Key to this view is the concept of attentional episodes, brief periods of intense attentional amplification of sensory representations that regulate access to working memory and response-related processes. We describe how attentional episodes are linked to earlier attentional mechanisms and to recurrent processing at the neural level. We present data showing that multiple sequential events can be involuntarily encoded in working memory when they appear during the same attentional episode, whether they are relevant or not. We also discuss the costs associated with processing multiple events within a single episode. Finally, we argue that breaking down the dichotomy between pre-attentive and attentive (as well as early vs. late selection) offers new solutions to old problems in attention research that have never been resolved. It can provide a unified and conceptually coherent account of the network of cognitive and neural processes that produce the goal-directed selectivity in perceptual processing that is commonly referred to as “attention”.
Neural codes in early sensory areas maximize fitness
It has generally been presumed that sensory information encoded by a nervous system should be as accurate as its biological limitations allow. However, perhaps counter intuitively, accurate representations of sensory signals do not necessarily maximize the organism’s chances of survival. We show that neural codes that maximize reward expectation—and not accurate sensory representations—account for retinal responses in insects, and retinotopically-specific adaptive codes in humans. Thus, our results provide evidence that fitness-maximizing rules imposed by the environment are applied at the earliest stages of sensory processing.
High precision coding in visual cortex
Individual neurons in visual cortex provide the brain with unreliable estimates of visual features. It is not known if the single-neuron variability is correlated across large neural populations, thus impairing the global encoding of stimuli. We recorded simultaneously from up to 50,000 neurons in mouse primary visual cortex (V1) and in higher-order visual areas and measured stimulus discrimination thresholds of 0.35 degrees and 0.37 degrees respectively in an orientation decoding task. These neural thresholds were almost 100 times smaller than the behavioral discrimination thresholds reported in mice. This discrepancy could not be explained by stimulus properties or arousal states. Furthermore, the behavioral variability during a sensory discrimination task could not be explained by neural variability in primary visual cortex. Instead behavior-related neural activity arose dynamically across a network of non-sensory brain areas. These results imply that sensory perception in mice is limited by downstream decoders, not by neural noise in sensory representations.
Experience dependent changes of sensory representation in the olfactory cortex
Sensory representations are typically thought as neuronal activity patterns that encode physical attributes of the outside world. However, increasing evidence is showing that as animals learned the association between a sensory stimulus and its behavioral relevance, stimulus representation in sensory cortical areas can change. In this seminar I will present recent experiments from our lab showing that the activity in the olfactory piriform cortex (PC) of mice encodes not only odor information, but also non-olfactory variables associated with the behavioral task. By developing an associative olfactory learning task, in which animals learn to associate a particular context with an odor and a reward, we were able to record the activity of multiple neurons as the animal runs in a virtual reality corridor. By analyzing the population activity dynamics using Principal Components Analysis, we find different population trajectories evolving through time that can discriminate aspects of different trial types. By using Generalized Linear Models we further dissected the contribution of different sensory and non-sensory variables to the modulation of PC activity. Interestingly, the experiments show that variables related to both sensory and non-sensory aspects of the task (e.g., odor, context, reward, licking, sniffing rate and running speed) differently modulate PC activity, suggesting that the PC adapt odor processing depending on experience and behavior.
Circuit and synaptic mechanisms of plasticity in neural ensembles
Inhibitory microcircuits play an important role regulating cortical responses to sensory stimuli. Interneurons that inhibit dendritic or somatic integration are gatekeepers for neural activity, synaptic plasticity and the formation of sensory representations. We have been investigating the synaptic plasticity mechanisms underlying the formation of ensembles in olfactory and orbitofrontal cortex. We have been focusing on the roles of three inhibitory neuron classes in gating excitatory synaptic plasticity in olfactory cortex- somatostatin (SST-INs), parvalbumin (PV-INs), and vasoactive intestinal polypeptide (VIP-INs) interneurons. Further, we are investigating the rules for inhibitory plasticity and a potential role in stabilizing ensembles in associative cortices. I will present new findings to support distinct roles for different interneuron classes in the gating and stabilization of ensemble representations of olfactory responses.
Low-dimensional sensory representations early in development facilitate receptive field formation
Bernstein Conference 2024
Hierarchy of prediction errors shapes context-dependent sensory representations
FENS Forum 2024
The role of GABAergic neurons in experience-dependent alterations of sensory representations in zebrafish forebrain
FENS Forum 2024