Sexual Dimorphism
sexual dimorphism
Reprogramming the nociceptive circuit topology reshapes sexual behavior in C. elegans
In sexually reproducing species, males and females respond to environmental sensory cues and transform the input into sexually dimorphic traits. Yet, how sexually dimorphic behavior is encoded in the nervous system is poorly understood. We characterize the sexually dimorphic nociceptive behavior in C. elegans – hermaphrodites present a lower pain threshold than males in response to aversive stimuli, and study the underlying neuronal circuits, which are composed of the same neurons that are wired differently. By imaging receptor expression, calcium responses and glutamate secretion, we show that sensory transduction is similar in the two sexes, and therefore explore how downstream network topology shapes dimorphic behavior. We generated a computational model that replicates the observed dimorphic behavior, and used this model to predict simple network rewirings that would switch the behavior between the sexes. We then showed experimentally, using genetic manipulations, artificial gap junctions, automated tracking and optogenetics, that these subtle changes to male connectivity result in hermaphrodite-like aversive behavior in-vivo, while hermaphrodite behavior was more robust to perturbations. Strikingly, when presented with aversive cues, rewired males were compromised in finding mating partners, suggesting that the network topology that enables efficient avoidance of noxious cues would have a reproductive "cost". To summarize, we present a deconstruction of a sex-shared neural circuit that affects sexual behavior, and how to reprogram it. More broadly, our results are an example of how common neuronal circuits changed their function during evolution by subtle topological rewirings to account for different environmental and sexual needs.
Sex-Specific Brain Transcriptional Signatures in Human MDD and their Correlates in Mouse Models of Depression
Major depressive disorder (MDD) is a sexually dimorphic disease. This sexual dimorphism is believed to result from sex-specific molecular alterations affecting functional pathways regulating the capacity of men and women to cope with daily life stress differently. Transcriptional changes associated with epigenetic alterations have been observed in the brain of men and women with depression and similar changes have been reported in different animal models of stress-induced depressive-like behaviors. In fact, most of our knowledge of the biological basis of MDD is derived from studies of chronic stress models in rodents. However, while these models capture certain aspects of the features of MDD, the extent to which they reproduce the molecular pathology of the human syndrome remains unknown and the functional consequences of these changes on the neuronal networks controlling stress responses are poorly understood. During this presentation, we will first address the extent by which transcriptional signatures associated with MDD compares in men and women. We will then transition to the capacity of different mouse models of chronic stress to recapitulate some of the transcriptional alterations associated with the expression of MDD in both sexes. Finally, we will briefly elaborate on the functional consequences of these changes at the neuronal level and conclude with an integrative perspective on the contribution of sex-specific transcriptional profiles on the expression of stress responses and MDD in men and women.
Sexual dimorphism of microglia
Sex differences in brain structure and function are of substantial scientific interest because of sex-related susceptibility to psychiatric and neurological disorders. Neuroinflammation is a common denominator of many of these diseases and thus microglia as the brain´s immunocompetent and instrumental cells has come into focus in sex specific studies. We and others show that male microglia are more frequent in specific brain areas and appear to have a higher potential to respond to stimuli, whereas female microglia seem to acquire a more “protective” phenotype.
Sex, guts and babies: the plasticity of the adult intestine and its neurons
Internal organs constantly exchange signals, and can respond with striking anatomical and functional transformations, even in fully developed organisms. We are exploring the mechanisms that drive and sustain such plasticity using the intestine and its neurons as experimental systems. I will present some of our recent work, which has characterised the enteric nervous system of Drosophila, and has explored its physiological plasticity as well as that of the intestine itself. This work has uncovered unexpected sexual dimorphisms, intestinal contributions to reproductive success and metabolic crosstalk between the gut and the brain. Interestingly, this crosstalk appears to be spatially constrained by the three dimensional arrangement of viscera, revealing a previously unrecognised layer of inter-organ signalling regulation. I may also describe our attempts to explore how broadly applicable our findings may be using mammalian systems.
Astrocytes phagocytic sexual dimorphism fosters major depressive disorder through MEGF10 dysfunction
FENS Forum 2024
Bidirectional manipulation of orexinergic neurons shows sexual dimorphism in learning and memory
FENS Forum 2024
Cellular specificity and sexual dimorphism of hippocampal CB1 receptors on behavioral processes
FENS Forum 2024
Decoding the developmental vulnerability to psychiatric disorders: Investigating the sexual dimorphism and role of perineuronal nets in habenulo-interpeduncular-system-mediated susceptibility to anxiety
FENS Forum 2024
Microglial metabolism and immune function are pivotal factors in sexual dimorphism in Alzheimer’s disease
FENS Forum 2024
Sexual dimorphism in compulsive alcohol drinking and its impact on pathological gambling and social dominance: A preclinical study
FENS Forum 2024
Strong sexual dimorphism in the evolution of fear memory revealed by brain-wide activation analysis
FENS Forum 2024