← Back

Shape Changes

Topic spotlight
TopicWorld Wide

shape changes

Discover seminars, jobs, and research tagged with shape changes across World Wide.
3 curated items3 Seminars
Updated over 3 years ago
3 items · shape changes
3 results
SeminarPhysics of LifeRecording

New prospects in shape morphing sheets: unexplored pathways, 4D printing, and autonomous actuation

Ido Levin
University of Washington
Jun 5, 2022

Living organisms have mastered the dynamic control of stresses within sheets to induce shape transformation and locomotion. For instance, the spatiotemporal pattern of action potential in a heart yields a dynamical stress field leading to shape changes and biological function. Such structures inspired the development of theoretical tools and responsive materials alike. Yet, present attempts to mimic their rich dynamics and phenomenology in autonomous synthetic matter are still very limited. In this talk, I will present several complementing innovations toward this goal: novel shaping mechanisms that were overlooked by previous research, new fabrication techniques for programmable matter via 4D printing of gel structures, and most prominently, the first autonomous shape morphing membranes. The dynamical control over the geometry of the material is a prevalent theme in all of these achievements. In particular, the latter system demonstrates localized deformations, induced by a pattern-forming chemical reaction, that prescribe the patterns of curvature, leading to global shape evolution. Together, these developments present a route for modeling and producing fully autonomous soft membranes mimicking some of the locomotive capabilities of living organisms.

SeminarPhysics of LifeRecording

Swimming and crawling of Euglena gracilis: a tale with many twists

Antonio De Simone
SISSA
Jun 8, 2021

Euglena gracilis is an interesting unicellular protist, also because it can adopt different motility strategies: swimming by flagellar propulsion, or crawling thanks to large amplitude shape changes of the whole body (a behavior known as “metaboly”, or “amoeboid motion”). Swimming trajectories are helical. The are powered by the beating of a single emerging flagellum, which spans non-planar waveforms in the shape of a twisted lasso. Finally the harmoniously coordinated shape changes that make metaboly possible, reminiscent of peristaltic waves, arise form the relative sliding of its pellicle strips, resulting in twisted helical bundles. We will report on the most recent findings on these interconnected topics, for which helical shapes provide a striking fil rouge.