Signaling Pathways
signaling pathways
How Intermittent Bioenergetic Challenges Enhance Brain and Body Health
Humans and other animals evolved in habitats fraught with a range of environmental challenges to their bodies and brains. Accordingly, cells and organ systems possess adaptive stress-responsive signaling pathways that enable them to not only withstand environmental challenges, but also to prepare for future challenges and function more efficiently. These phylogenetically conserved processes are the foundation of the hormesis principle in which repeated exposures to low to moderate amounts of an environmental challenge improve cellular and organismal fitness. Here I describe cellular and molecular mechanisms by which cells in the brain and body respond to intermittent fasting and exercise in ways that enhance performance and counteract aging and disease processes. Switching back and forth between adaptive stress response (during fasting and exercise) and growth and plasticity (eating, resting, sleeping) modes enhances the performance and resilience of various organ systems. While pharmacological interventions that engage a particular hormetic mechanism are being developed, it seems unlikely that any will prove superior to fasting and exercise.
Uncovering the molecular effectors of diet and exercise
Despite the profound effects of nutrition and physical activity on human health, our understanding of the molecules mediating the salutary effects of specific foods or activities remains remarkably limited. Here, we share our ongoing studies that use unbiased and high-resolution metabolomics technologies to uncover the molecules and molecular effectors of diet and exercise. We describe how exercise stimulates the production of Lac-Phe, a blood-borne signaling metabolite that suppresses feeding and obesity. Ablation of Lac-Phe biosynthesis in mice increases food intake and obesity after exercise. We also describe the discovery of an orphan metabolite, BHB-Phe. Ketosis-inducible BHB-Phe is a congener of exercise-inducible Lac-Phe, produced in CNDP2+ cells when levels of BHB are high, and functions to lower body weight and adiposity in ketosis. Our data uncover an unexpected and underappreciated signaling role for metabolic fuel derivatives in mediating the cardiometabolic benefits of diet and exercise. These data also suggest that diet and exercise may mediate their physiologic effects on energy balance via a common family of molecules and overlapping signaling pathways.
Neuron-glial interactions in health and disease: from cognition to cancer
In the central nervous system, neuronal activity is a critical regulator of development and plasticity. Activity-dependent proliferation of healthy glial progenitors, oligodendrocyte precursor cells (OPCs), and the consequent generation of new oligodendrocytes contributes to adaptive myelination. This plasticity of myelin tunes neural circuit function and contributes to healthy cognition. The robust mitogenic effect of neuronal activity on normal oligodendroglial precursor cells, a putative cellular origin for many forms of glioma, suggests that dysregulated or “hijacked” mechanisms of myelin plasticity might similarly promote malignant cell proliferation in this devastating group of brain cancers. Indeed, neuronal activity promotes progression of both high-grade and low-grade glioma subtypes in preclinical models. Crucial mechanisms mediating activity-regulated glioma growth include paracrine secretion of BDNF and the synaptic protein neuroligin-3 (NLGN3). NLGN3 induces multiple oncogenic signaling pathways in the cancer cell, and also promotes glutamatergic synapse formation between neurons and glioma cells. Glioma cells integrate into neural circuits synaptically through neuron-to-glioma synapses, and electrically through potassium-evoked currents that are amplified through gap-junctional coupling between tumor cells This synaptic and electrical integration of glioma into neural circuits is central to tumor progression in preclinical models. Thus, neuron-glial interactions not only modulate neural circuit structure and function in the healthy brain, but paracrine and synaptic neuron-glioma interactions also play important roles in the pathogenesis of glial cancers. The mechanistic parallels between normal and malignant neuron-glial interactions underscores the extent to which mechanisms of neurodevelopment and plasticity are subverted by malignant gliomas, and the importance of understanding the neuroscience of cancer.
A draft connectome for ganglion cell types of the mouse retina
The visual system of the brain is highly parallel in its architecture. This is clearly evident in the outputs of the retina, which arise from neurons called ganglion cells. Work in our lab has shown that mammalian retinas contain more than a dozen distinct types of ganglion cells. Each type appears to filter the retinal image in a unique way and to relay this processed signal to a specific set of targets in the brain. My students and I are working to understand the meaning of this parallel organization through electrophysiological and anatomical studies. We record from light-responsive ganglion cells in vitro using the whole-cell patch method. This allows us to correlate directly the visual response properties, intrinsic electrical behavior, synaptic pharmacology, dendritic morphology and axonal projections of single neurons. Other methods used in the lab include neuroanatomical tracing techniques, single-unit recording and immunohistochemistry. We seek to specify the total number of ganglion cell types, the distinguishing characteristics of each type, and the intraretinal mechanisms (structural, electrical, and synaptic) that shape their stimulus selectivities. Recent work in the lab has identified a bizarre new ganglion cell type that is also a photoreceptor, capable of responding to light even when it is synaptically uncoupled from conventional (rod and cone) photoreceptors. These ganglion cells appear to play a key role in resetting the biological clock. It is just this sort of link, between a specific cell type and a well-defined behavioral or perceptual function, that we seek to establish for the full range of ganglion cell types. My research concerns the structural and functional organization of retinal ganglion cells, the output cells of the retina whose axons make up the optic nerve. Ganglion cells exhibit great diversity both in their morphology and in their responses to light stimuli. On this basis, they are divisible into a large number of types (>15). Each ganglion-cell type appears to send its outputs to a specific set of central visual nuclei. This suggests that ganglion cell heterogeneity has evolved to provide each visual center in the brain with pre-processed representations of the visual scene tailored to its specific functional requirements. Though the outline of this story has been appreciated for some time, it has received little systematic exploration. My laboratory is addressing in parallel three sets of related questions: 1) How many types of ganglion cells are there in a typical mammalian retina and what are their structural and functional characteristics? 2) What combination of synaptic networks and intrinsic membrane properties are responsible for the characteristic light responses of individual types? 3) What do the functional specializations of individual classes contribute to perceptual function or to visually mediated behavior? To pursue these questions, we label retinal ganglion cells by retrograde transport from the brain; analyze in vitro their light responses, intrinsic membrane properties and synaptic pharmacology using the whole-cell patch clamp method; and reveal their morphology with intracellular dyes. Recently, we have discovered a novel ganglion cell in rat retina that is intrinsically photosensitive. These ganglion cells exhibit robust light responses even when all influences from classical photoreceptors (rods and cones) are blocked, either by applying pharmacological agents or by dissociating the ganglion cell from the retina. These photosensitive ganglion cells seem likely to serve as photoreceptors for the photic synchronization of circadian rhythms, the mechanism that allows us to overcome jet lag. They project to the circadian pacemaker of the brain, the suprachiasmatic nucleus of the hypothalamus. Their temporal kinetics, threshold, dynamic range, and spectral tuning all match known properties of the synchronization or "entrainment" mechanism. These photosensitive ganglion cells innervate various other brain targets, such as the midbrain pupillary control center, and apparently contribute to a host of behavioral responses to ambient lighting conditions. These findings help to explain why circadian and pupillary light responses persist in mammals, including humans, with profound disruption of rod and cone function. Ongoing experiments are designed to elucidate the phototransduction mechanism, including the identity of the photopigment and the nature of downstream signaling pathways. In other studies, we seek to provide a more detailed characterization of the photic responsiveness and both morphological and functional evidence concerning possible interactions with conventional rod- and cone-driven retinal circuits. These studies are of potential value in understanding and designing appropriate therapies for jet lag, the negative consequences of shift work, and seasonal affective disorder.
Building a Simple and Versatile Illumination System for Optogenetic Experiments
Controlling biological processes using light has increased the accuracy and speed with which researchers can manipulate many biological processes. Optical control allows for an unprecedented ability to dissect function and holds the potential for enabling novel genetic therapies. However, optogenetic experiments require adequate light sources with spatial, temporal, or intensity control, often a bottleneck for researchers. Here we detail how to build a low-cost and versatile LED illumination system that is easily customizable for different available optogenetic tools. This system is configurable for manual or computer control with adjustable LED intensity. We provide an illustrated step-by-step guide for building the circuit, making it computer-controlled, and constructing the LEDs. To facilitate the assembly of this device, we also discuss some basic soldering techniques and explain the circuitry used to control the LEDs. Using our open-source user interface, users can automate precise timing and pulsing of light on a personal computer (PC) or an inexpensive tablet. This automation makes the system useful for experiments that use LEDs to control genes, signaling pathways, and other cellular activities that span large time scales. For this protocol, no prior expertise in electronics is required to build all the parts needed or to use the illumination system to perform optogenetic experiments.
Neurovascular signaling pathways in the mammalian retina
As a developmental outpocket of the brain, the retina exhibits features commonly found in most brain areas, including neurovascular interactions. In this presentation I will discuss various pathways that contribute to neurovascular interactions in the mammalian retina and present newly uncovered elements that likely participate in these pathways. Information obtained from retina could improve our understanding of neurovascular coupling pathways throughout the brain.
A fresh look at the bird retina
I am working on the vertebrate retina, with a main focus on the mouse and bird retina. Currently my work is focused on three major topics: Functional and molecular analysis of electrical synapses in the retina Circuitry and functional role of retinal interneurons: horizontal cells Circuitry for light-dependent magnetoreception in the bird retina Electrical synapses Electrical synapses (gap junctions) permit fast transmission of electrical signals and passage of metabolites by means of channels, which directly connect the cytoplasm of adjoining cells. A functional gap junction channel consists of two hemichannels (one provided by each of the cells), each comprised of a set of six protein subunits, termed connexins. These building blocks exist in a variety of different subtypes, and the connexin composition determines permeability and gating properties of a gap junction channel, thereby enabling electrical synapses to meet a diversity of physiological requirements. In the retina, various connexins are expressed in different cell types. We study the cellular distribution of different connexins as well as the modulation induced by transmitter action or change of ambient light levels, which leads to altered electrical coupling properties. We are also interested in exploiting them as therapeutic avenue for retinal degeneration diseases. Horizontal cells Horizontal cells receive excitatory input from photoreceptors and provide feedback inhibition to photoreceptors and feedforward inhibition to bipolar cells. Because of strong electrical coupling horizontal cells integrate the photoreceptor input over a wide area and are thought to contribute to the antagonistic organization of bipolar cell and ganglion cell receptive fields and to tune the photoreceptor–bipolar cell synapse with respect to the ambient light conditions. However, the extent to which this influence shapes retinal output is unclear, and we aim to elucidate the functional importance of horizontal cells for retinal signal processing by studying various transgenic mouse models. Retinal circuitry for light-dependent magnetoreception in the bird We are studying which neuronal cell types and pathways in the bird retina are involved in the processing of magnetic signals. Likely, magnetic information is detected in cryptochrome-expressing photoreceptors and leaves the retina through ganglion cell axons that project via the thalamofugal pathway to Cluster N, a part of the visual wulst essential for the avian magnetic compass. Thus, we aim to elucidate the synaptic connections and retinal signaling pathways from putatively magnetosensitive photoreceptors to thalamus-projecting ganglion cells in migratory birds using neuroanatomical and electrophysiological techniques.
Understanding the cellular and molecular landscape of autism spectrum disorders
Large genomic studies of individuals with autism spectrum disorders (ASD) have revealed approximately 100-200 high risk genes. However, whether these genes function in similar or different signaling networks in brain cells (neurons) remains poorly studied. We are using proteomic technology to build an ASD-associated signaling network map as a resource for the Autism research community. This resource can be used to study Autism risk genes and understand how pathways are convergent, and how patient mutations change the interaction profile. In this presentation, we will present how we developed a pipeline using neurons to build protein-protein interaction profiles. We detected previously unknown interactions between different ASD risk genes that have never been linked together before, and for some genes, we identified new signaling pathways that have not been previously reported. This resource will be available to the research community and will foster collaborations between ASD researchers to help accelerate therapeutics for ASD and related disorders.
Firing Homeostasis in Neural Circuits: From Basic Principles to Malfunctions
Neural circuit functions are stabilized by homeostatic mechanisms at long timescales in response to changes in experience and learning. However, we still do not know which specific physiological variables are being stabilized, nor which cellular or neural-network components comprise the homeostatic machinery. At this point, most evidence suggests that the distribution of firing rates amongst neurons in a brain circuit is the key variable that is maintained around a circuit-specific set-point value in a process called firing rate homeostasis. Here, I will discuss our recent findings that implicate mitochondria as a central player in mediating firing rate homeostasis and its impairments. While mitochondria are known to regulate neuronal variables such as synaptic vesicle release or intracellular calcium concentration, we searched for the mitochondrial signaling pathways that are essential for homeostatic regulation of firing rates. We utilize basic concepts of control theory to build a framework for classifying possible components of the homeostatic machinery in neural networks. This framework may facilitate the identification of new homeostatic pathways whose malfunctions drive instability of neural circuits in distinct brain disorders.
Microenvironment role in axonal regeneration- looking beyond the neurons
After an injury in the adult mammalian central nervous system, lesioned axons fail to regenerate. This failure to regenerate contrasts with the remarkable potential of axons to grow during embryonic development and after an injury in the peripheral nervous system. Peripheral sensory neurons with cell soma in dorsal root ganglia (DRG) switch to a regenerative state after nerve injury to enable axon regeneration and functional recovery. Decades of research have focused on the signaling pathways elicited by injury in sensory neurons and in Schwann cells that insulate axons as central mechanisms regulating nerve repair. However, neuronal microenvironment is far more complex and is composed of multiple cell types including endothelial, immune and glial cells. Whether the microenvironment surrounding neuronal soma contribute to the poor regenerative outcomes following central injuries remains largely unexplored. To answer this question, we performed a single cell transcriptional profiling of the DRG neuronal microenvironment response to peripheral and central injuries. In dissecting the roles of the microenvironment contribution, we have focused on a poorly studied population of Satellite Glial Cells (SGC) surrounding the neuronal cell soma. This study has uncovered a previously unknown role for SGC in nerve regeneration and defined SGC as transcriptionally distinct from Schwann cells while sharing similarities with astrocytes. Upon a peripheral injury, SGC contribute to axon regeneration via Fatty acid synthase (Fasn)-PPARα signaling pathway. Through repurposing fenofibrate, an FDA- approved PPARα agonist used for dyslipidemia treatment, we were able to rescue the impaired regeneration in mice lacking Fasn in SGC. Our analysis reveals that in response to central injuries, SGC do not activate the PPAR signaling pathway. However, induction of this pathway with fenofibrate treatment, rescued axon regeneration following an injury to the central nerves. Collectively, our results uncovered a previously unappreciated role of the neuronal microenvironment differential response in central and peripheral injuries.
Neural Stem Cell Lineage Progression in Developing Cerebral Cortex
The concerted production of the correct number and diversity of neurons and glia by neural stem cells is essential for intricate neural circuit assembly. In the developing cerebral cortex, radial glia progenitors (RGPs) are responsible for producing all neocortical neurons and certain glia lineages. We recently performed a clonal analysis by exploiting the genetic MADM (Mosaic Analysis with Double Markers) technology and discovered a high degree of non-stochasticity and thus deterministic mode of RGP behaviour. However, the cellular and molecular mechanisms controlling RGP lineage progression remain unknown. To this end we use quantitative MADM-based genetic paradigms at single cell resolution to define the cell-autonomous functions of signaling pathways controlling cortical neuron/glia genesis and postnatal stem cell behaviour in health and disease. Here I will outline our current understanding of the mechanistic framework instructing neural stem cell lineage progression and discuss new data about the role of genomic imprinting – an epigenetic phenomenon - in cortical development.
Activation of non-nuclear estrogen receptor signaling pathways with PaPE-1 as a potential remedy for amyloid-beta induced toxicity: Impact on autophagy
FENS Forum 2024
Caffeic acid attenuates neuroinflammation and cognitive impairment in streptozotocin-induced diabetic rats: Pivotal role of the cholinergic and purinergic signaling pathways
FENS Forum 2024
Chronodisruption during early developmental stages affects clock in the SCN in a sex-dependent manner via melatonin-independent signaling pathways
FENS Forum 2024
Korean red ginseng marc-derived gintonin alleviates Alzheimer’s disease-related cognitive dysfunction by stimulating NRF2 pathway and inhibiting p38/NF-κB/STAT3 signaling pathways through LPA receptor 1
FENS Forum 2024
A suite of novel probes and methods for monitoring signaling pathways
FENS Forum 2024