Skill Acquisition
skill acquisition
Dynamic structural neuroplasticity in the bilingual brain
Research on the effects of bilingualism on the structure of the brain has so far yielded variable patterns. Although it cannot be disputed that learning and using additional languages restructures the brain, the reported effects vary considerably, including both increases and reductions in grey matter volume and white matter diffusivity. This presentation reviews the available evidence and compares it to patterns from other domains of skill acquisition, culminating in the Dynamic Restructuring Model, a theory which synthesises the available evidence from the perspective of experience-based neuroplasticity. New corroborating evidence is also presented from healthy young and older bilinguals, and the presentation concludes with the implications of these effects for the ageing brain.
Analogies in motor learning - acquisition and refinement of movement skills
Analogies are widely used by teachers and coaches of different movement disciplines, serving a role during the learning phase of a new skill, and honing one’s performance to a competitive level. In previous studies, analogies improved motor control in various tasks and across age groups. Our study aimed to evaluate the efficacy of analogies throughout the learning process, using kinematic measures for an in-depth analysis. We tested whether applying analogies can shorten the motor learning process and induce insight and skill improvement in tasks that usually demand many hours of practice. The experiment included a drawing task, in which subjects were asked to connect four dots into a closed shape, and a mirror game, in which subjects tracked an oval that moved across the screen. After establishing a baseline, subjects were given an analogy, explicit instructions, or no further instruction. We compared their improvement in overall skill, accuracy, and speed. Subjects in the analogy and explicit groups improved their performance in the drawing task, while significant differences were found in the mirror game only for slow movements between analogy and controls. In conclusion, analogies are an important tool for teachers and coaches, and more research is needed to understand how to apply them for maximum results. They can rapidly change motor control and strategy but may also affect only some aspects of a movement and not others. Careful thought is needed to construct an effective analogy that encompasses relevant movement facets, as well as the practitioner’s personal background and experience.
Neural Population Perspectives on Learning and Motor Control
Learning is a population phenomenon. Since it is the organized activity of populations of neurons that cause movement, learning a new skill must involve reshaping those population activity patterns. Seeing how the brain does this has been elusive, but a brain-computer interface approach can yield new insight. We presented monkeys with novel BCI mappings that we knew would be difficult for them to learn how to control. Over several days, we observed the emergence of new patterns of neural activity that endowed the animals with the ability to perform better at the BCI task. We speculate that there also exists a direct relationship between new patterns of neural activity and new abilities during natural movements, but it is much harder to see in that setting.