Society
society
Screen Savers : Protecting adolescent mental health in a digital world
In our rapidly evolving digital world, there is increasing concern about the impact of digital technologies and social media on the mental health of young people. Policymakers and the public are nervous. Psychologists are facing mounting pressures to deliver evidence that can inform policies and practices to safeguard both young people and society at large. However, research progress is slow while technological change is accelerating.My talk will reflect on this, both as a question of psychological science and metascience. Digital companies have designed highly popular environments that differ in important ways from traditional offline spaces. By revisiting the foundations of psychology (e.g. development and cognition) and considering digital changes' impact on theories and findings, we gain deeper insights into questions such as the following. (1) How do digital environments exacerbate developmental vulnerabilities that predispose young people to mental health conditions? (2) How do digital designs interact with cognitive and learning processes, formalised through computational approaches such as reinforcement learning or Bayesian modelling?However, we also need to face deeper questions about what it means to do science about new technologies and the challenge of keeping pace with technological advancements. Therefore, I discuss the concept of ‘fast science’, where, during crises, scientists might lower their standards of evidence to come to conclusions quicker. Might psychologists want to take this approach in the face of technological change and looming concerns? The talk concludes with a discussion of such strategies for 21st-century psychology research in the era of digitalization.
FENS Forum 2024
Organised by FENS in partnership with the Austrian Neuroscience Association and the Hungarian Neuroscience Society, the FENS Forum 2024 will take place on 25–29 June 2024 in Vienna, Austria:contentReference[oaicite:0]{index=0}. The FENS Forum is Europe’s largest neuroscience congress, covering all areas of neuroscience from basic to translational research:contentReference[oaicite:1]{index=1}.
Rhythms for cognition: Learning, routing and top-down modulation
Quality of life after DBS; Non-motor effects of DBS and quality of life
It’s our pleasure to announce that we will host Haidar Dafsari and Günther Deuschl on September 28th at noon ET / 6PM CET. Haidar Dafsari, MD, is a researcher and lecturer at the University Hospital Cologne. Günther Deuschl, MD, PhD, is a professor at Kiel University. He was president of the International Movement Disorders Society (MDS) from 2011-2013, Editor in Chief of the journal Movement Disorders and has been awarded numerous high-class awards. Beside his scientific presentation, he will give us a glimpse at the “Person behind the science”.The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
Vision Unveiled: Understanding Face Perception in Children Treated for Congenital Blindness
Despite her still poor visual acuity and minimal visual experience, a 2-3 month old baby will reliably respond to facial expressions, smiling back at her caretaker or older sibling. But what if that same baby had been deprived of her early visual experience? Will she be able to appropriately respond to seemingly mundane interactions, such as a peer’s facial expression, if she begins seeing at the age of 10? My work is part of Project Prakash, a dual humanitarian/scientific mission to identify and treat curably blind children in India and then study how their brain learns to make sense of the visual world when their visual journey begins late in life. In my talk, I will give a brief overview of Project Prakash, and present findings from one of my primary lines of research: plasticity of face perception with late sight onset. Specifically, I will discuss a mixed methods effort to probe and explain the differential windows of plasticity that we find across different aspects of distributed face recognition, from distinguishing a face from a nonface early in the developmental trajectory, to recognizing facial expressions, identifying individuals, and even identifying one’s own caretaker. I will draw connections between our empirical findings and our recent theoretical work hypothesizing that children with late sight onset may suffer persistent face identification difficulties because of the unusual acuity progression they experience relative to typically developing infants. Finally, time permitting, I will point to potential implications of our findings in supporting newly-sighted children as they transition back into society and school, given that their needs and possibilities significantly change upon the introduction of vision into their lives.
Neuroscience of socioeconomic status and poverty: Is it actionable?
SES neuroscience, using imaging and other methods, has revealed generalizations of interest for population neuroscience and the study of individual differences. But beyond its scientific interest, SES is a topic of societal importance. Does neuroscience offer any useful insights for promoting socioeconomic justice and reducing the harms of poverty? In this talk I will use research from my own lab and others’ to argue that SES neuroscience has the potential to contribute to policy in this area, although its application is premature at present. I will also attempt to forecast the ways in which practical solutions to the problems of poverty may emerge from SES neuroscience. Bio: Martha Farah has conducted groundbreaking research on face and object recognition, visual attention, mental imagery, and semantic memory and - in more recent times - has been at the forefront of interdisciplinary research into neuroscience and society. This deals with topics such as using fMRI for lie detection, ethics of cognitive enhancement, and effects of social deprivation on brain development.
Don't forget the gametes: Neurodevelopmental pathogenesis starts in the sperm and egg
Proper development of the nervous system depends not only on the inherited DNA sequence, but also on proper regulation of gene expression, as controlled in part by epigenetic mechanisms present in the parental gametes. In this presentation an internationally recognized research advocate explains why researchers concerned about the origins of increasingly prevalent neurodevelopmental disorders such as autism and attention deficit hyperactivity disorder should look beyond genetics in probing the origins of dysregulated transcription of brain-related genes. The culprit for a subset of cases, she contends, may lie in the exposure history of the parents, and thus their germ cells. To illustrate how environmentally informed, nongenetic dysfunction may occur, she focuses on the example of parents' histories of exposure to common agents of modern inhalational anesthesia, a highly toxic exposure that in mammalian models has been seen to induce heritable neurodevelopmental abnormality in offspring born of exposed germline.
The 15th David Smith Lecture in Anatomical Neuropharmacology: Professor Tim Bliss, "Memories of long term potentiation
The David Smith Lectures in Anatomical Neuropharmacology, Part of the 'Pharmacology, Anatomical Neuropharmacology and Drug Discovery Seminars Series', Department of Pharmacology, University of Oxford. The 15th David Smith Award Lecture in Anatomical Neuropharmacology will be delivered by Professor Tim Bliss, Visiting Professor at UCL and the Frontier Institutes of Science and Technology, Xi’an Jiaotong University, China, and is hosted by Professor Nigel Emptage. This award lecture was set up to celebrate the vision of Professor A David Smith, namely, that explanations of the action of drugs on the brain requires the definition of neuronal circuits, the location and interactions of molecules. Tim Bliss gained his PhD at McGill University in Canada. He joined the MRC National Institute for Medical Research in Mill Hill, London in 1967, where he remained throughout his career. His work with Terje Lømo in the late 1960’s established the phenomenon of long-term potentiation (LTP) as the dominant synaptic model of how the mammalian brain stores memories. He was elected as a Fellow of the Royal Society in 1994 and is a founding fellow of the Academy of Medical Sciences. He shared the Bristol Myers Squibb award for Neuroscience with Eric Kandel in 1991, the Ipsen Prize for Neural Plasticity with Richard Morris and Yadin Dudai in 2013. In May 2012 he gave the annual Croonian Lecture at the Royal Society on ‘The Mechanics of Memory’. In 2016 Tim, with Graham Collingridge and Richard Morris shared the Brain Prize, one of the world's most coveted science prizes. Abstract: In 1966 there appeared in Acta Physiologica Scandinavica an abstract of a talk given by Terje Lømo, a PhD student in Per Andersen’s laboratory at the University of Oslo. In it Lømo described the long-lasting potentiation of synaptic responses in the dentate gyrus of the anaesthetised rabbit that followed repeated episodes of 10-20Hz stimulation of the perforant path. Thus, heralded and almost entirely unnoticed, one of the most consequential discoveries of 20th century neuroscience was ushered into the world. Two years later I arrived in Oslo as a visiting post-doc from the National Institute for Medical Research in Mill Hill, London. In this talk I recall the events that led us to embark on a systematic reinvestigation of the phenomenon now known as long-term potentiation (LTP) and will then go on to describe the discoveries and controversies that enlivened the early decades of research into synaptic plasticity in the mammalian brain. I will end with an observer’s view of the current state of research in the field, and what we might expect from it in the future.
How communication networks promote cross-cultural similarities: The case of category formation
Individuals vary widely in how they categorize novel phenomena. This individual variation has led canonical theories in cognitive and social science to suggest that communication in large social networks leads populations to construct divergent category systems. Yet, anthropological data indicates that large, independent societies consistently arrive at similar categories across a range of topics. How is it possible for diverse populations, consisting of individuals with significant variation in how they view the world, to independently construct similar categories? Through a series of online experiments, I show how large communication networks within cultures can promote the formation of similar categories across cultures. For this investigation, I designed an online “Grouping Game” to observe how people construct categories in both small and large populations when tasked with grouping together the same novel and ambiguous images. I replicated this design for English-speaking subjects in the U.S. and Mandarin-speaking subjects in China. In both cultures, solitary individuals and small social groups produced highly divergent category systems. Yet, large social groups separately and consistently arrived at highly similar categories both within and across cultures. These findings are accurately predicted by a simple mathematical model of critical mass dynamics. Altogether, I show how large communication networks can filter lexical diversity among individuals to produce replicable society-level patterns, yielding unexpected implications for cultural evolution. In particular, I discuss how participants in both cultures readily harnessed analogies when categorizing novel stimuli, and I examine the role of communication networks in promoting cross-cultural similarities in analogy-making as the key engine of category formation.
Dissecting subcircuits underlying hippocampal function
Liset M de la Prida is a Physicist (1994) and PhD in Neuroscience (1998), who leads the Laboratorio de Circuitos Neuronales at the Instituto Cajal, Madrid, Spain (http://www.hippo-circuitlab.es). The main focus of her lab is to understand the function of the hippocampal circuits in the normal and the diseased brain, in particular oscillations and neuronal representations. She is a leading international expert in the study of the basic mechanisms of physiological ripples and epileptic fast ripples, with strong visibility as developer of novel groundbreaking electrophysiological tools. Dr. de la Prida serves as an Editor for prestigious journals including eLife, Journal of Neuroscience Methods and eNeuro, and has commissioning duties in the American Epilepsy Society, FENS and the Spanish Society for Neurosciences.
A talk about consciousness
Prof. Marcello Massimini will give a talk addressed to the Humanitas University Undergraduate Neurological Society students and Humanitas Neuro Center members about consciousness and his groundbreaking studies on this topic. Prof. Maurizio Cecconi and Dr. Villa will then give their clinical point of view as neurointensivists on the pathologic states of consciousness.
Psychedelics and related plasticity-promoting neurotherapeutics
Dr. David E. Olson will give a talk addressed to the Humanitas University Undergraduate Neurological Society students, focusing on his work on psychedelic drugs and related plasticity-promoting neurotherapeutics. The event will begin with a general and brief introduction to the topic by the HUUNS members.
Rhythms in sounds and rhythms in brains: the temporal structure of auditory comprehension
NeurotechRI Kickoff Meeting
The digital kickoff of NeurotechRI will take place on the 26th from 13:00 to 16:00 (CET). Come and join us as we discuss our plans for the Graduate School and our research and innovation roadmap! The programme can be downloaded here. Don’t miss out on our Board of Governors presentation of the project and the synergies with NeurotechEU, meet with our keynote speakers from the European Research Executive Agency: Mr Stijn Delaure (DG R&I, Unit A3 “R&I Actors and Research Careers”) and Ms Marta Truco Calbet (DG R&I, Unit C.4 "Reforming European R&I and Research Infrastructures''). Last but not least, the day will finish with a roundtable discussion organised by our students society. The roundtable will be an open space and an opportunity for all students to discuss their needs in education. Registration is open: www.crowdcast.io/e/neurotechri-kickoff
NeurotechEU Summit
Our first NeurotechEU Summit will be fully digital and will take place on November 22th from 09:00 to 17:00 (CET). The final programme can be downloaded here. Hosted by the Karolinska Institutet, the summit will provide you an overview of our actions and achievements from the last year and introduce the priorities for the next year. You will also have the opportunity to attend the finals of the 3 minute thesis competition (3MT) organized by the Synapses Student Society, the student charter of NeurotechEU. Good luck to all the finalists: Lynn Le, Robin Noordhof, Adriana Gea González, Juan Carranza Valencia, Lea van Husen, Guoming (Tony) Man, Lilly Pitshaporn Leelaarporn, Cemre Su, Kaya Keleş, Ramazan Tarık Türksoy, Cristiana Tisca, Sara Bandiera, Irina Maria Vlad, Iulia Vadan, Borbála László, and David Papp! Don’t miss our keynote lecture, success stories and interactive discussions with Ms Vanessa Debiais Sainton (Head of Higher Education Unit, European Commission), Prof. Staffan Holmin (Karolinska Institutet), Dr Mohsen Kaboli (BMW Group, member of the NeurotechEU Associates Advisory Committee), and Prof. Peter Hagoort (Max Planck Institute for Psycholinguistics, Donders Institute). Would you like to use this opportunity to network? Please join our informal breakout sessions on Wonder.me at 11:40 CET. You will be able to move from one discussion group to another within 3 sessions: NeurotechEU ecosystem - The Associates Advisory Committee: Synergies in cross-sectoral initiatives Education next: Trans-European education and the European Universities Initiatives - Lessons learned thus far. Equality, diversity and inclusion at NeurotechEU: removing access barriers to education and developing a working, learning, and social environment where everyone is respected and valued. You can register for this free event at www.crowdcast.io/e/neurotecheu-summit
Networking—the key to success… especially in the brain
In our everyday lives, we form connections and build up social networks that allow us to function successfully as individuals and as a society. Our social networks tend to include well-connected individuals who link us to other groups of people that we might otherwise have limited access to. In addition, we are more likely to befriend individuals who a) live nearby and b) have mutual friends. Interestingly, neurons tend to do the same…until development is perturbed. Just like social networks, neuronal networks require highly connected hubs to elicit efficient communication at minimal cost (you can’t befriend everybody you meet, nor can every neuron wire with every other!). This talk will cover some of Alex’s work showing that microscopic (cellular scale) brain networks inferred from spontaneous activity show similar complex topology to that previously described in macroscopic human brain scans. The talk will also discuss what happens when neurodevelopment is disrupted in the case of a monogenic disorder called Rett Syndrome. This will include simulations of neuronal activity and the effects of manipulation of model parameters as well as what happens when we manipulate real developing networks using optogenetics. If functional development can be restored in atypical networks, this may have implications for treatment of neurodevelopmental disorders like Rett Syndrome.
Will it keep me awake? Common caffeine intake habits and sleep in real life situations
Daily caffeine consumption and chronic sleep restriction are highly prevalent in society. It is well established that acute caffeine intake under controlled conditions enhances vigilance and promotes wakefulness but can also delay sleep initiation and reduce electroencephalographic (EEG) markers of sleep intensity, particularly in susceptible individuals. To investigate whether these effects are also present during chronic consumption of coffee/caffeine, we recently conducted several complementary studies. We examined whether repeated coffee intake in dose and timing mimicking ‘real world’ habits maintains simple and complex attentional processes during chronic sleep restriction, such as during a busy work week. We found in genetically caffeine-sensitive individuals that regular coffee (300 mg caffeine/day) benefits most attentional tasks for 3-4 days when compared to decaffeinated coffee. Genetic variants were also used in the population-based HypnoLaus cohort, to investigate whether habitual caffeine consumption causally affects time to fall asleep, number of awakenings during sleep, and EEG-derived sleep intensity. The multi-level statistical analyses consistently showed that sleep quality was virtually unaffected when >3 caffeine-containing beverages/day were compared to 0-3 beverages/day. This conclusion was further corroborated by quantifying the sleep EEG in the laboratory in habitual caffeine consumers. Compared to placebo, daily intake of 3 x 150 mg caffeine over 10 days did not strongly impair nocturnal sleep nor subjective sleep quality in good sleepers. Finally, we tested whether an engineered delayed, pulsatile-release caffeine formula can improve the quality of morning awakening in sleep-restricted volunteers. We found that 160 mg caffeine taken at bedtime ameliorated the quality of awakening, increased positive and reduced negative affect scores, and promoted sustained attention immediately upon scheduled wake-up. Such an approach could prevent over-night caffeine withdrawal and provide a proactive strategy to attenuate disabling sleep inertia. Taken together, the studies suggest that common coffee/caffeine intake habits can transiently attenuate detrimental consequences of reduced sleep virtually without disturbing subjective and objective markers of sleep quality. Nevertheless, coffee/caffeine consumption cannot compensate for chronic sleep restriction.
Appearance-based impression formation
Despite the common advice “not to judge a book by its cover”, we form impressions of character within a second of seeing a stranger’s face. These impressions have widespread consequences for society and for the economy, making it vital that we have a clear theoretical understanding of which impressions are important and how they are formed. In my talk, I outline a data-driven approach to answering these questions, starting by building models of the key dimensions underlying impressions of naturalistic face images. Overall, my findings suggest deeper links between the fields of face perception and social stereotyping than have previously been recognised.
Pediatric Migraine: Who, What, When, Where
This talk will address important aspects of pediatric migraine research, including: 1) Who is affected by pediatric migraine? 2) What does pediatric migraine look like, and what does a clinician need to do to reach a migraine diagnosis in a child? 3) When does pediatric migraine begin, and how might it present clinically before it presents as headache (e.g., infant colic, benign paroxysmal torticollis, cyclic vomiting syndrome etc.) 4) Where does responsibility for decreasing pediatric migraine frequency rest? What is society's role in preventing migraine in young people?
Analyzing Retinal Disease Using Electron Microscopic Connectomics
John DowlingJohn E. Dowling received his AB and PhD from Harvard University. He taught in the Biology Department at Harvard from 1961 to 1964, first as an Instructor, then as assistant professor. In 1964 he moved to Johns Hopkins University, where he held an appointment as associate professor of Ophthalmology and Biophysics. He returned to Harvard as professor of Biology in 1971, was the Maria Moors Cabot Professor of Natural Sciences from 1971-2001, Harvard College professor from 1999-2004 and is presently the Gordon and Llura Gund Professor of Neurosciences. Dowling was chairman of the Biology Department at Harvard from 1975 to 1978 and served as associate dean of the faculty of Arts and Sciences from 1980 to 1984. He was Master of Leverett House at Harvard from 1981-1998 and currently serves as president of the Corporation of The Marine Biological Laboratory in Woods Hole. He is a Fellow of the American Academy of Arts and Sciences, a member of the National Academy of Sciences and a member of the American Philosophical Society. Awards that Dowling received include the Friedenwald Medal from the Association of Research in Ophthalmology and Vision in 1970, the Annual Award of the New England Ophthalmological Society in 1979, the Retinal Research Foundation Award for Retinal Research in 1981, an Alcon Vision Research Recognition Award in 1986, a National Eye Institute's MERIT award in 1987, the Von Sallman Prize in 1992, The Helen Keller Prize for Vision Research in 2000 and the Llura Ligget Gund Award for Lifetime Achievement and Recognition of Contribution to the Foundation Fighting Blindness in 2001. He was granted an honorary MD degree by the University of Lund (Sweden) in 1982 and an honorary Doctor of Laws degree from Dalhousie University (Canada) in 2012. Dowling's research interests have focused on the vertebrate retina as a model piece of the brain. He and his collaborators have long been interested in the functional organization of the retina, studying its synaptic organization, the electrical responses of the retinal neurons, and the mechanisms underlying neurotransmission and neuromodulation in the retina. Dowling became interested in zebrafish as a system in which one could explore the development and genetics of the vertebrate retina about 20 years ago. Part of his research team has focused on retinal development in zebrafish and the role of retinoic acid in early eye and photoreceptor development. A second group has developed behavioral tests to isolate mutations, both recessive and dominant, specific to the visual system.
Behavioral and neurobiological mechanisms of social cooperation
Human society operates on large-scale cooperation and shared norms of fairness. However, individual differences in cooperation and incentives to free-riding on others’ cooperation make large-scale cooperation fragile and can lead to reduced social-welfare. Deciphering the neural codes representing potential rewards/costs for self and others is crucial for understanding social decision-making and cooperation. I will first talk about how we integrate computational modeling with functional magnetic resonance imaging to investigate the neural representation of social value and the modulation by oxytocin, a nine-amino acid neuropeptide, in participants evaluating monetary allocations to self and other (self-other allocations). Then I will introduce our recent studies examining the neurobiological mechanisms underlying intergroup decision-making using hyper-scanning, and share with you how we alter intergroup decisions using psychological manipulations and pharmacological challenge. Finally, I will share with you our on-going project that reveals how individual cooperation spreads through human social networks. Our results help to better understand the neurocomputational mechanism underlying interpersonal and intergroup decision-making.
Flexible codes and loci of visual working memory
Neural correlates of visual working memory have been found in early visual, parietal, and prefrontal regions. These findings have spurred fruitful debate over how and where in the brain memories might be represented. Here, I will present data from multiple experiments to demonstrate how a focus on behavioral requirements can unveil a more comprehensive understanding of the visual working memory system. Specifically, items in working memory must be maintained in a highly robust manner, resilient to interference. At the same time, storage mechanisms must preserve a high degree of flexibility in case of changing behavioral goals. Several examples will be explored in which visual memory representations are shown to undergo transformations, and even shift their cortical locus alongside their coding format based on specifics of the task.
Neural correlates of cognitive control across the adult lifespan
Cognitive control involves the flexible allocation of mental resources during goal-directed behaviour and comprises three correlated but distinct domains—inhibition, task shifting, and working memory. Healthy ageing is characterised by reduced cognitive control. Professor Cheryl Grady and her team have been studying the influence of age differences in large-scale brain networks on the three control processes in a sample of adults from 20 to 86 years of age. In this webinar, Professor Cheryl Grady will describe three aspects of this work: 1) age-related dedifferentiation and reconfiguration of brain networks across the sub-domains 2) individual differences in the relation of task-related activity to age, structural integrity and task performance for each sub-domain 3) modulation of brain signal variability as a function of cognitive load and age during working memory. This research highlights the reduction in dynamic range of network activity that occurs with ageing and how this contributes to age differences in cognitive control. Cheryl Grady is a senior scientist at the Rotman Research Institute at Baycrest, and Professor in the departments of Psychiatry and Psychology at the University of Toronto. She held the Canada Research Chair in Neurocognitive Aging from 2005-2018 and was elected as a Fellow of the Royal Society of Canada in 2019. Her research uses MRI to determine the role of brain network connectivity in cognitive ageing.
Life of Pain and Pleasure
The ability to experience pain is old in evolutionary terms. It is an experience shared across species. Acute pain is the body’s alarm system, and as such it is a good thing. Pain that persists beyond normal tissue healing time (3-4 months) is defined as chronic – it is the system gone wrong and it is not a good thing. Chronic pain has recently been classified as both a symptom and disease in its own right. It is one of the largest medical health problems worldwide with one in five adults diagnosed with the condition. The brain is key to the experience of pain and pain relief. This is the place where pain emerges as a perception. So, relating specific brain measures using advanced neuroimaging to the change patients describe in their pain perception induced by peripheral or central sensitization (i.e. amplification), psychological or pharmacological mechanisms has tremendous value. Identifying where amplification or attenuation processes occur along the journey from injury to the brain (i.e. peripheral nerves, spinal cord, brainstem and brain) for an individual and relating these neural mechanisms to specific pain experiences, measures of pain relief, persistence of pain states, degree of injury and the subject's underlying genetics, has neuroscientific and potential diagnostic relevance. This is what neuroimaging has afforded – a better understanding and explanation of why someone’s pain is the way it is. We can go ‘behind the scenes’ of the subjective report to find out what key changes and mechanisms make up an individual’s particular pain experience. A key area of development has been pharmacological imaging where objective evidence of drugs reaching the target and working can be obtained. We even now understand the mechanisms of placebo analgesia – a powerful phenomenon known about for millennia. More recently, researchers have been investigating through brain imaging whether there is a pre-disposing vulnerability in brain networks towards developing chronic pain. So, advanced neuroimaging studies can powerfully aid explanation of a subject’s multidimensional pain experience, pain relief (analgesia) and even what makes them vulnerable to developing chronic pain. The application of this goes beyond the clinic and has relevance in courts of law, and other areas of society, such as in veterinary care. Relatively far less work has been directed at understanding what changes in the brain occur during altered states of consciousness induced either endogenously (e.g. sleep) or exogenously (e.g. anaesthesia). However, that situation is changing rapidly. Our recent multimodal neuroimaging work explores how anaesthetic agents produce altered states of consciousness such that perceptual experiences of pain and awareness are degraded. This is bringing us fascinating insights into the complex phenomenon of anaesthesia, consciousness and even the concept of self-hood. These topics will be discussed in my talk alongside my ‘side-story’ of life as a scientist combining academic leadership roles with doing science and raising a family.
The role of orexin/hypocretin in social behaviour
My lab is focused on how brain encodes and modulates social interactions. Intraspecific social interactions are integral for survival and maintenance of society among all mammalian species. Despite the importance of social interactions, we lack a complete understanding of the brain circuitry involved in processing social behaviour. My lab investigates how the hypothalamic orexin (hypocretin) neurons and their downstream circuits participate in social interaction behaviours. These neurons are located exclusively in the hypothalamus that regulates complex and goal-directed behaviours. We recently identified that orexin neurons differentially encode interaction between familiar and novel animals. We are currently investigating how chronic social isolation, a risk factor for the development of social-anxiety like behaviours, affects orexin neuron activity and how we can manipulate the activity of these neurons to mitigate isolation-induced social deficits.
What to consider, when making strategic social decisions? An Eye-tracking investigation
In many societal problems, individuals exhibit a conflict between keeping resources (e.g., money, time or attention) to themselves or sharing them with another individual or group. The reasons motivating decisions in favor of others welfare can thereby vary from purely altruistic to completely strategic. Be it the stranger making an effort returning a lost valet to its rightful owner or a co-worker pitching in her fair share in a joint project. Actions like that create an environment that makes living together a pleasant experience. Hence, understanding how decisions determining the welfare of oneself and others are made is important for facilitating this behavior by building institutions that maximize the rate of cooperation in a society. To shed new light on such decision making processes I will present recent evidence from a set of process tracing experiments utilizing eye-tracking and economic games. Experiments will focus on the role of social preferences in the choice construction process and will identify mechanisms (i.e., search and processing depth, information weighting, and ignorance) through which they guide choice behavior. I will in particular focus on the differences and commonalitiesbetween strategic and altruistic decisions. Specifically, investigating to which extent people direct attention towards certain components of the decision situation in a context-dependent manner.
The physics of cement cohesion
Cement is the main binding agent in concrete, literally gluing together rocks and sand into the most-used synthetic material on Earth. However, cement production is responsible for significant amounts of man- made greenhouse gases—in fact if the cement industry were a country, it would be the third largest emitter in the world. Alternatives to the current, environmentally harmful cement production process are not available essentially because the gaps in fundamental understanding hamper the development of smarter and more sustainable solutions. The ultimate challenge is to link the chemical composition of cement grains to the nanoscale physics of the cohesive forces that emerge when mixing cement with water. Cement nanoscale cohesion originates from the electrostatics of ions accumulated in a water-based solution between like-charged surfaces but it is not captured by existing theories because of the nature of the ions involved and the high surface charges. Surprisingly enough, this is also the case for unexplained cohesion in a range of colloidal and biological matter. About one century after the early studies of cement hydration, we have quantitatively solved this notoriously hard problem and discovered how cement cohesion develops during hydration. I will discuss how 3D numerical simulations that feature a simple but molecular description of ions and water, together with an analytical theory that goes beyond the traditional continuum approximations, helped us demonstrate that the optimized interlocking of ion-water structures determine the net cohesive forces and their evolution. These findings open the path to scientifically grounded strategies of material design for cements and have implications for a much wider range of materials and systems where ionic water-based solutions feature both strong Coulombic and confinement effects, ranging from biological membranes to soils. Construction materials are central to our society and to our life as humans on this planet, but usually far removed from fundamental science. We can now start to understand how cement physical-chemistry determines performance, durability and sustainability.
European University for Brain and Technology Virtual Opening
The European University for Brain and Technology, NeurotechEU, is opening its doors on the 16th of December. From health & healthcare to learning & education, Neuroscience has a key role in addressing some of the most pressing challenges that we face in Europe today. Whether the challenge is the translation of fundamental research to advance the state of the art in prevention, diagnosis or treatment of brain disorders or explaining the complex interactions between the brain, individuals and their environments to design novel practices in cities, schools, hospitals, or companies, brain research is already providing solutions for society at large. There has never been a branch of study that is as inter- and multi-disciplinary as Neuroscience. From the humanities, social sciences and law to natural sciences, engineering and mathematics all traditional disciplines in modern universities have an interest in brain and behaviour as a subject matter. Neuroscience has a great promise to become an applied science, to provide brain-centred or brain-inspired solutions that could benefit the society and kindle a new economy in Europe. The European University of Brain and Technology (NeurotechEU) aims to be the backbone of this new vision by bringing together eight leading universities, 250+ partner research institutions, companies, societal stakeholders, cities, and non-governmental organizations to shape education and training for all segments of society and in all regions of Europe. We will educate students across all levels (bachelor’s, master’s, doctoral as well as life-long learners) and train the next generation multidisciplinary scientists, scholars and graduates, provide them direct access to cutting-edge infrastructure for fundamental, translational and applied research to help Europe address this unmet challenge.
Machine Learning as a tool for positive impact : case studies from climate change
Climate change is one of our generation's greatest challenges, with increasingly severe consequences on global ecosystems and populations. Machine Learning has the potential to address many important challenges in climate change, from both mitigation (reducing its extent) and adaptation (preparing for unavoidable consequences) aspects. To present the extent of these opportunities, I will describe some of the projects that I am involved in, spanning from generative model to computer vision and natural language processing. There are many opportunities for fundamental innovation in this field, advancing the state-of-the-art in Machine Learning while ensuring that this fundamental progress translates into positive real-world impact.
On climate change, multi-agent systems and the behaviour of networked control
Multi-agent reinforcement learning (MARL) has recently shown great promise as an approach to networked system control. Arguably, one of the most difficult and important tasks for which large scale networked system control is applicable is common-pool resource (CPR) management. Crucial CPRs include arable land, fresh water, wetlands, wildlife, fish stock, forests and the atmosphere, of which proper management is related to some of society’s greatest challenges such as food security, inequality and climate change. This talk will consist of three parts. In the first, we will briefly look at climate change and how it poses a significant threat to life on our planet. In the second, we will consider the potential of multi-agent systems for climate change mitigation and adaptation. And finally, in the third, we will discuss recent research from InstaDeep into better understanding the behaviour of networked MARL systems used for CPR management. More specifically, we will see how the tools from empirical game-theoretic analysis may be harnessed to analyse the differences in networked MARL systems. The results give new insights into the consequences associated with certain design choices and provide an additional dimension of comparison between systems beyond efficiency, robustness, scalability and mean control performance.
Affordable Robots/Computer Systems to Identify, Assess, and Treat Impairment After Brain Injury
Non-traumatic brain injury due to stroke, cerebral palsy and HIV often result in serious long-term disability worldwide, affecting more than 150 million persons globally; with the majority of persons living in low and middle income countries. These diseases often result in varying levels of motor and cognitive impairment due to brain injury which then affects the person’s ability to complete activities of daily living and fully participate in society. Increasingly advanced technologies are being used to support identification, diagnosis, assessment, and therapy for patients with brain injury. Specifically, robot and mechatronic systems can provide patients, physicians and rehabilitation clinical providers with additional support to care for and improve the quality of life of children and adults with motor and cognitive impairment. This talk will provide a brief introduction to the area of rehabilitation robotics and, via case studies, illustrate how computer/technology-assisted rehabilitation systems can be developed and used to assess motor and cognitive impairment, detect early evidence of functional impairment, and augment therapy in high and low-resource settings.
Protecting Machines from Us
The possibilities of machine learning and neural networks in particular are ever expanding. With increased opportunities to do good, however there are just as many opportunities to do harm and even in the case that good intentions are at the helm, evidence suggests that opportunities for good may eventually prove to be the opposite. The greatest threat to what machine learning is able to achieve and to us as humans, is machine learning that does not reflect the diversity of the users it is meant to serve. It is important that we are not so pre-occupied with advancing technology into the future that we have not taken the time to invest the energy into engineering the security measures this future requires. It is important to investigate now, as thoroughly as we investigate differing deep neural network architectures, the complex questions regarding the fact that humans and the society in which they operate is inherently biased and loaded with prejudice and that these traits find themselves in the machines we create (and increasingly allow to run our lives).
“Super Spreaders in the Corona Epidemics”
Recently a powerful example of a replicating nano-machine entered our society. In principle, it’s just a normal disease, that one attempts to model with 3 or 4 simple coupled equations with 2 important parameters: a timescale, and a replication factor (the famous R0). Then one tries to guess how changes in society change R0 and perhaps adopt some more or less strong lock-down measures. However, this virus has more “personality” than that. It behaves differently in different persons, and persons behave differently. Presumably, only a few of us infect a lot, while most do not infect so much. This assumption is supported by the observation that couples living together only infect each other with about 15 percent probability, indicating that most infected people are not really infectious. I will discuss this and other aspects of Covid-19 in the perspective of models that describe heterogeneous individuals in a society. In particular, we suggest that limiting superspreading opportunities is a cost-effective strategy to mitigate Covid-19.
Machine behavior: A Research Agenda for a Society Permeated by Artificial Intelligence
Unsupervised deep learning identifies semantic disentanglement in single inferotemporal neurons
Irina is a research scientist at DeepMind, where she works in the Froniers team. Her work aims to bring together insights from the fields of neuroscience and physics to advance general artificial intelligence through improved representation learning. Before joining DeepMind, Irina was a British Psychological Society Undergraduate Award winner for her achievements as an undergraduate student in Experimental Psychology at Westminster University, followed by a DPhil at the Oxford Centre for Computational Neuroscience and Artificial Intelligence, where she focused on understanding the computational principles underlying speech processing in the auditory brain. During her DPhil, Irina also worked on developing poker AI, applying machine learning in the finance sector, and working on speech recognition at Google Research."" https://arxiv.org/pdf/2006.14304.pdf