← Back

Soft Matter Physics

Topic spotlight
TopicWorld Wide

soft matter physics

Discover seminars, jobs, and research tagged with soft matter physics across World Wide.
4 curated items3 Seminars1 Position
Updated 2 days ago
4 items · soft matter physics
4 results
Position

Ilya Nemenman

Department of Physics at Emory University
Emory University
Dec 5, 2025

The ideal candidate will work at the intersection of theoretical statistical physics and machine learning / statistical inference and will connect these fields to other existing research strengths in the Department (biological physics, soft matter physics, condensed matter and optics). The candidate will also complement the research strengths of the University more generally, for instance by adding to Emory's internationally recognized expertise in biological and biomedical sciences and in the Theory and Modeling of Living Systems. The candidate will benefit from and actively seek collaborative interactions, including with the cohort of other recruits in the university-wide AI.Humanity initiative.

SeminarPhysics of LifeRecording

Trapping active particles up to the limiting case: bacteria enclosed in a biofilm

Chantal Valeriani
Complutense Madrid
May 25, 2021

Active matter systems are composed of constituents, each one in nonequilibrium, that consume energy in order to move [1]. A characteristic feature of active matter is collective motion leading to nonequilibrium phase transitions or large scale directed motion [2]. A number of recent works have featured active particles interacting with obstacles, either moving or fixed [3,4,5]. When an active particle encounters an asymmetric obstacle, different behaviours are detected depending on the nature of its active motion. On the one side, rectification effects arise in a suspension of run-and-tumble particles interacting with a wall of funnelled-shaped openings, caused by particles persistence length [6]. The same trapping mechanism could be responsible for the intake of microorganisms in the underground leaves [7] of Carnivorous plants [8]. On the other side, for aligning particles [9] interacting with a wall of funnelled-shaped openings, trapping happens on the (opposite) wider opening side of the funnels [10,11]. Interestingly, when funnels are located on a circular array, trapping is more localised and depends on the nature of the Vicsek model. Active particles can be synthetic (such as synthetic active colloids) or alive (such as living bacteria). A prototypical model to study living microswimmers is P. fluorescens, a rod shaped and biofilm forming bacterium. Biofilms are microbial communities self-assembled onto external interfaces. Biofilms can be described within the Soft Matter physics framework [12] as a viscoelastic material consisting of colloids (bacterial cells) embedded in a cross-linked polymer gel (polysaccharides cross-linked via proteins/multivalent cations), whose water content vary depending on the environmental conditions. Bacteria embedded in the polymeric matrix control biofilm structure and mechanical properties by regulating its matrix composition. We have recently monitored structural features of Pseudomonas fluorescens biofilms grown with and without hydrodynamic stress [13,14]. We have demonstrated that bacteria are capable of self-adapting to hostile hydrodynamic stress by tailoring the biofilm chemical composition, thus affecting both the mesoscale structure of the matrix and its viscoelastic properties that ultimately regulate the bacteria-polymer interactions. REFERENCES [1] C. Bechinger et al. Rev. Mod. Phys. 88, 045006 (2016); [2] T. Vicsek, A. Zafeiris Phys. Rep. 517, 71 (2012); [3] C. Bechinger, R. Di Leonardo, H. Lowen, C. Reichhardt, G. Volpe, and G. Volpe, Reviews of Modern Physics 88, 045006 (2016); [4] R Martinez, F Alarcon, DR Rodriguez, JL Aragones, C Valeriani The European Physical Journal E 41, 1 (2018); [5] DR Rodriguez, F Alarcon, R Martinez, J Ramírez, C Valeriani, Soft matter 16 (5), 1162 (2020); [6] C. O. Reichhardt and C. Reichhardt, Annual Review of Condensed Matter
Physics 8, 51 (2017); [7] W Barthlott, S Porembski, E Fischer, B Gemmel Nature 392, 447 (1998); [8] C B. Giuliano, R Zhang, R.Martinez Fernandez, C.Valeriani and L.Wilson (in preparation, 2021); [9] R Martinez, F Alarcon, JL Aragones, C Valeriani Soft matter 16 (20), 4739 (2020); [10] P. Galajada, J. Keymer, P. Chaikin and R.Austin, Journal of bacteriology, 189, 8704 (2007); [11] M. Wan, C.O. Reichhardt, Z. Nussinov, and C. Reichhardt, Physical Review Letters 101, 018102 (2008); [12] J N. Wilking , T E. Angelini , A Seminara , M P. Brenner , and D A. Weitz MRS Bulletin 36, 385 (2011); [13]J Jara, F Alarcón, A K Monnappa, J Ignacio Santos, V Bianco, P Nie, M Pica Ciamarra, A Canales, L Dinis, I López-Montero, C Valeriani, B Orgaz, Frontiers in microbiology 11, 3460 (2021); [14] P Nie, F Alarcon, I López-Montero, B Orgaz, C Valeriani, M Pica Ciamarra

SeminarPhysics of LifeRecording

Soft matter physics and the COVID-19 pandemic

William Poon
The University of Edinburgh
Dec 8, 2020

Much of the science underpinning the global response to the COVID-19 pandemic lies in the soft matter domain. Coronaviruses are composite particles with a core of nucleic acids complexed to proteins surrounded by a protein-studded lipid bilayer shell. A dominant route for transmission is via air-borne aerosols and droplets. Viral interaction with polymeric body fluids, particularly mucus, and cell membranes controls their infectivity, while their interaction with skin and artificial surfaces underpins cleaning and disinfection and the efficacy of masks and other personal protective equipment. The global response to COVID-19 has highlighted gaps in the soft matter knowledge base. I will survey these gaps, especially as pertaining to the transmission of the disease, and suggest questions that can (and need to) be tackled, both in response to COVID-19 and to better prepare for future viral pandemics.

SeminarPhysics of LifeRecording

(What) can soft matter physics teach us about biological function?

Workshop, Multiple Speakers
Emory University
Jul 30, 2020

The “soft, active, and living matter” community has grown tremendously in recent years, conducting exciting research at the interface between soft matter and biological systems. But are all living systems also soft matter systems? Do the ideas of function (or purpose) in biological systems require us to introduce deep new ideas into the framework of soft matter theories? Does the (often) qualitatively different character of data in biological experiments require us to change the types of experiments we conduct and the goals of our theoretical treatments? Eight speakers will anchor the workshop, exploring these questions across a range of biological system scales. Each speaker will deliver a 10-minute talk with another 10 minutes set aside for moderated questions/discussion. We expect the talks to be broad, bold, and provocative, discussing both the nature of the theoretical tools and experimental techniques we have at present and also those we think we will ultimately need to answer deep questions at the interface of soft matter and biology.