Spatial Location
spatial location
Navigating semantic spaces: recycling the brain GPS for higher-level cognition
Humans share with other animals a complex neuronal machinery that evolved to support navigation in the physical space and that supports wayfinding and path integration. In my talk I will present a series of recent neuroimaging studies in humans performed in my Lab aimed at investigating the idea that this same neural navigation system (the “brain GPS”) is also used to organize and navigate concepts and memories, and that abstract and spatial representations rely on a common neural fabric. I will argue that this might represent a novel example of “cortical recycling”, where the neuronal machinery that primarily evolved, in lower level animals, to represent relationships between spatial locations and navigate space, in humans are reused to encode relationships between concepts in an internal abstract representational space of meaning.
Associative memory of structured knowledge
A long standing challenge in biological and artificial intelligence is to understand how new knowledge can be constructed from known building blocks in a way that is amenable for computation by neuronal circuits. Here we focus on the task of storage and recall of structured knowledge in long-term memory. Specifically, we ask how recurrent neuronal networks can store and retrieve multiple knowledge structures. We model each structure as a set of binary relations between events and attributes (attributes may represent e.g., temporal order, spatial location, role in semantic structure), and map each structure to a distributed neuronal activity pattern using a vector symbolic architecture (VSA) scheme. We then use associative memory plasticity rules to store the binarized patterns as fixed points in a recurrent network. By a combination of signal-to-noise analysis and numerical simulations, we demonstrate that our model allows for efficient storage of these knowledge structures, such that the memorized structures as well as their individual building blocks (e.g., events and attributes) can be subsequently retrieved from partial retrieving cues. We show that long-term memory of structured knowledge relies on a new principle of computation beyond the memory basins. Finally, we show that our model can be extended to store sequences of memories as single attractors.
Internally Organized Abstract Task Maps in the Mouse Medial Frontal Cortex
New tasks are often similar in structure to old ones. Animals that take advantage of such conserved or “abstract” task structures can master new tasks with minimal training. To understand the neural basis of this abstraction, we developed a novel behavioural paradigm for mice: the “ABCD” task, and recorded from their medial frontal neurons as they learned. Animals learned multiple tasks where they had to visit 4 rewarded locations on a spatial maze in sequence, which defined a sequence of four “task states” (ABCD). Tasks shared the same circular transition structure (… ABCDABCD …) but differed in the spatial arrangement of rewards. As well as improving across tasks, mice inferred that A followed D (i.e. completed the loop) on the very first trial of a new task. This “zero-shot inference” is only possible if animals had learned the abstract structure of the task. Across tasks, individual medial Frontal Cortex (mFC) neurons maintained their tuning to the phase of an animal’s trajectory between rewards but not their tuning to task states, even in the absence of spatial tuning. Intriguingly, groups of mFC neurons formed modules of coherently remapping neurons that maintained their tuning relationships across tasks. Such tuning relationships were expressed as replay/preplay during sleep, consistent with an internal organisation of activity into multiple, task-matched ring attractors. Remarkably, these modules were anchored to spatial locations: neurons were tuned to specific task space “distances” from a particular spatial location. These newly discovered “Spatially Anchored Task clocks” (SATs), suggest a novel algorithm for solving abstraction tasks. Using computational modelling, we show that SATs can perform zero-shot inference on new tasks in the absence of plasticity and guide optimal policy in the absence of continual planning. These findings provide novel insights into the Frontal mechanisms mediating abstraction and flexible behaviour.
Geometry of sequence working memory in macaque prefrontal cortex
How the brain stores a sequence in memory remains largely unknown. We investigated the neural code underlying sequence working memory using two-photon calcium imaging to record thousands of neurons in the prefrontal cortex of macaque monkeys memorizing and then reproducing a sequence of locations after a delay. We discovered a regular geometrical organization: The high-dimensional neural state space during the delay could be decomposed into a sum of low-dimensional subspaces, each storing the spatial location at a given ordinal rank, which could be generalized to novel sequences and explain monkey behavior. The rank subspaces were distributed across large overlapping neural groups, and the integration of ordinal and spatial information occurred at the collective level rather than within single neurons. Thus, a simple representational geometry underlies sequence working memory.
A novel form of retinotopy in area V2 highlights location-dependent feature selectivity in the visual system
Topographic maps are a prominent feature of brain organization, reflecting local and large-scale representation of the sensory surface. Traditionally, such representations in early visual areas are conceived as retinotopic maps preserving ego-centric retinal spatial location while ensuring that other features of visual input are uniformly represented for every location in space. I will discuss our recent findings of a striking departure from this simple mapping in the secondary visual area (V2) of the tree shrew that is best described as a sinusoidal transformation of the visual field. This sinusoidal topography is ideal for achieving uniform coverage in an elongated area like V2 as predicted by mathematical models designed for wiring minimization, and provides a novel explanation for stripe-like patterns of intra-cortical connections and functional response properties in V2. Our findings suggest that cortical circuits flexibly implement solutions to sensory surface representation, with dramatic consequences for large-scale cortical organization. Furthermore our work challenges the framework of relatively independent encoding of location and features in the visual system, showing instead location-dependent feature sensitivity produced by specialized processing of different features in different spatial locations. In the second part of the talk, I will propose that location-dependent feature sensitivity is a fundamental organizing principle of the visual system that achieves efficient representation of positional regularities in visual input, and reflects the evolutionary selection of sensory and motor circuits to optimally represent behaviorally relevant information. The relevant papers can be found here: V2 retinotopy (Sedigh-Sarvestani et al. Neuron, 2021) Location-dependent feature sensitivity (Sedigh-Sarvestani et al. Under Review, 2022)
The Role of Hippocampal Replay in Memory Consolidation
The hippocampus lies at the centre of a network of brain regions thought to support spatial and episodic memory. Place cells - the principal cell of the hippocampus, represent information about an animal’s spatial location. Yet, during rest and awake quiescence place cells spontaneously recapitulate past trajectories (‘replay’). Replay has been hypothesised to support systems consolidation – the stabilisation of new memories via maturation of complementary cortical memory traces. Indeed, in recent work we found place and grid cells, from the deep medial entorhinal cortex (dMEC, the principal cortical output region of the hippocampus), replayed coherently during rest periods. Importantly, dMEC grid cells lagged place cells by ~11ms; suggesting the coordination may reflect consolidation. Moreover, preliminary data shows that the dMEC-hippocampal coordination strengthens as an animal becomes familiar with a task and that it may be led by directionally modulated cells. Finally, on-going work, in my recently established lab, shows replay may represent the mechanism underlying the maturation of episodic/spatial memory in pre-weanling pups. Together, these results indicate replay may play a central role in ensuring the permanency of memories.
A robust neural integrator based on the interactions of three time scales
Neural integrators are circuits that are able to code analog information such as spatial location or amplitude. Storing amplitude requires the network to have a large number of attractors. In classic models with recurrent excitation, such networks require very careful tuning to behave as integrators and are not robust to small mistuning of the recurrent weights. In this talk, I introduce a circuit with recurrent connectivity that is subjected to a slow subthreshold oscillation (such as the theta rhythm in the hippocampus). I show that such a network can robustly maintain many discrete attracting states. Furthermore, the firing rates of the neurons in these attracting states are much closer to those seen in recordings of animals. I show the mechanism for this can be explained by the instability regions of the Mathieu equation. I then extend the model in various ways and, for example, show that in a spatially distributed network, it is possible to code location and amplitude simultaneously. I show that the resulting mean field equations are equivalent to a certain discontinuous differential equation.
Cortical circuits for olfactory navigation
Olfactory navigation is essential for the survival of living beings from unicellular organisms to mammals. In the wild, rodents combine odor information with an internal spatial representation of the environment for foraging and navigation. What are the neural circuits in the brain that implement these behaviours? My research addresses this question by examining the synaptic circuits and neural population activity in the olfactory cortex to understand the integration of olfactory and spatial information. Primary olfactory (piriform) cortex (PCx) has long been recognized as a highly associative brain structure. What is the behavioural and functional role of these associative synapses in PCx? We designed an odor-cued navigation task, where rats must use both olfactory and spatial information to obtain water rewards. We recorded from populations of posterior piriform cortex (pPCx) neurons during behaviour and found that individual neurons were not only odor-selective, but also fired differentially to the same odor sampled at different locations, forming an “olfactory place map”. Spatial locations can be decoded from simultaneously recorded pPCx population, and spatial selectivity is maintained in the absence of odors, across behavioural contexts. This novel olfactory place map is consistent with our finding for a dominant role of associative excitatory synapses in shaping PCx representations, and suggest a role for PCx spatial representations in supporting olfactory navigation. This work not only provides insight into the neural basis for how odors can be used for navigation, but also reveals PCx as a prime site for addressing the general question of how sensory information is anchored within memory systems and combined with cognitive maps to guide flexible behaviour.