← Back

Spike Timing

Topic spotlight
TopicWorld Wide

spike timing

Discover seminars, jobs, and research tagged with spike timing across World Wide.
12 curated items8 Seminars4 ePosters
Updated about 4 years ago
12 items · spike timing
12 results
SeminarNeuroscienceRecording

NMC4 Short Talk: Systematic exploration of neuron type differences in standard plasticity protocols employing a novel pathway based plasticity rule

Patricia Rubisch (she/her)
University of Edinburgh
Dec 1, 2021

Spike Timing Dependent Plasticity (STDP) is argued to modulate synaptic strength depending on the timing of pre- and postsynaptic spikes. Physiological experiments identified a variety of temporal kernels: Hebbian, anti-Hebbian and symmetrical LTP/LTD. In this work we present a novel plasticity model, the Voltage-Dependent Pathway Model (VDP), which is able to replicate those distinct kernel types and intermediate versions with varying LTP/LTD ratios and symmetry features. In addition, unlike previous models it retains these characteristics for different neuron models, which allows for comparison of plasticity in different neuron types. The plastic updates depend on the relative strength and activation of separately modeled LTP and LTD pathways, which are modulated by glutamate release and postsynaptic voltage. We used the 15 neuron type parametrizations in the GLIF5 model presented by Teeter et al. (2018) in combination with the VDP to simulate a range of standard plasticity protocols including standard STDP experiments, frequency dependency experiments and low frequency stimulation protocols. Slight variation in kernel stability and frequency effects can be identified between the neuron types, suggesting that the neuron type may have an effect on the effective learning rule. This plasticity model builds a middle ground between biophysical and phenomenological models allowing not just for the combination with more complex and biophysical neuron models, but is also computationally efficient so can be used in network simulations. Therefore it offers the possibility to explore the functional role of the different kernel types and electrophysiological differences in heterogeneous networks in future work.

SeminarNeuroscienceRecording

Error correction and reliability timescale in converging cortical networks

Eran Stark
Tel Aviv University
Apr 28, 2021

Rapidly changing inputs such as visual scenes and auditory landscapes are transmitted over several synaptic interfaces and perceived with little loss of detail, but individual neurons are typically “noisy” and cortico-cortical connections are typically “weak”. To understand how information embodied in spike train is transmitted in a lossless manner, we focus on a single synaptic interface: between pyramidal cells and putative interneurons. Using arbitrary white noise patterns injected intra-cortically as photocurrents to freely-moving mice, we find that directly-activated cells exhibit precision of several milliseconds, but post-synaptic, indirectly-activated cells exhibit higher precision. Considering multiple identical messages, the reliability of directly-activated cells peaks at a timescale of dozens of milliseconds, whereas indirectly-activated cells exhibit an order-of-magnitude faster timescale. Using data-driven modelling, we find that error correction is consistent with non-linear amplification of coincident spikes.

SeminarNeuroscienceRecording

The Dark Side of Vision: Resolving the Neural Code

Petri Ala-Laurila
Aalto University
Apr 5, 2021

All sensory information – like what we see, hear and smell – gets encoded in spike trains by sensory neurons and gets sent to the brain. Due to the complexity of neural circuits and the difficulty of quantifying complex animal behavior, it has been exceedingly hard to resolve how the brain decodes these spike trains to drive behavior. We now measure quantal signals originating from sparse photons through the most sensitive neural circuits of the mammalian retina and correlate the retinal output spike trains with precisely quantified behavioral decisions. We utilize a combination of electrophysiological measurements on the most sensitive ON and OFF retinal ganglion cell types and a novel deep-learning based tracking technology of the head and body positions of freely-moving mice. We show that visually-guided behavior relies on information from the retinal ON pathway for the dimmest light increments and on information from the retinal OFF pathway for the dimmest light decrements (“quantal shadows”). Our results show that the distribution of labor between ON and OFF pathways starts already at starlight supporting distinct pathway-specific visual computations to drive visually-guided behavior. These results have several fundamental consequences for understanding how the brain integrates information across parallel information streams as well as for understanding the limits of sensory signal processing. In my talk, I will discuss some of the most eminent consequences including the extension of this “Quantum Behavior” paradigm from mouse vision to monkey and human visual systems.

SeminarNeuroscienceRecording

STDP and the transfer of rhythmic signals in the brain

Maoz Shamir
Ben Gurion University
Mar 9, 2021

Rhythmic activity in the brain has been reported in relation to a wide range of cognitive processes. Changes in the rhythmic activity have been related to pathological states. These observations raise the question of the origin of these rhythms: can the mechanisms responsible for generation of these rhythms and that allow the propagation of the rhythmic signal be acquired via a process of learning? In my talk I will focus on spike timing dependent plasticity (STDP) and examine under what conditions this unsupervised learning rule can facilitate the propagation of rhythmic activity downstream in the central nervous system. Next, the I will apply the theory of STDP to the whisker system and demonstrate how STDP can shape the distribution of preferred phases of firing in a downstream population. Interestingly, in both these cases STDP dynamics does not relax to a fixed-point solution, rather the synaptic weights remain dynamic. Nevertheless, STDP allows for the system to retain its functionality in the face of continuous remodeling of the entire synaptic population.

SeminarNeuroscienceRecording

Cellular mechanisms behind stimulus evoked quenching of variability

Brent Doiron
University of Chicago
Jan 26, 2021

A wealth of experimental studies show that the trial-to-trial variability of neuronal activity is quenched during stimulus evoked responses. This fact has helped ground a popular view that the variability of spiking activity can be decomposed into two components. The first is due to irregular spike timing conditioned on the firing rate of a neuron (i.e. a Poisson process), and the second is the trial-to-trial variability of the firing rate itself. Quenching of the variability of the overall response is assumed to be a reflection of a suppression of firing rate variability. Network models have explained this phenomenon through a variety of circuit mechanisms. However, in all cases, from the vantage of a neuron embedded within the network, quenching of its response variability is inherited from its synaptic input. We analyze in vivo whole cell recordings from principal cells in layer (L) 2/3 of mouse visual cortex. While the variability of the membrane potential is quenched upon stimulation, the variability of excitatory and inhibitory currents afferent to the neuron are amplified. This discord complicates the simple inheritance assumption that underpins network models of neuronal variability. We propose and validate an alternative (yet not mutually exclusive) mechanism for the quenching of neuronal variability. We show how an increase in synaptic conductance in the evoked state shunts the transfer of current to the membrane potential, formally decoupling changes in their trial-to-trial variability. The ubiquity of conductance based neuronal transfer combined with the simplicity of our model, provides an appealing framework. In particular, it shows how the dependence of cellular properties upon neuronal state is a critical, yet often ignored, factor. Further, our mechanism does not require a decomposition of variability into spiking and firing rate components, thereby challenging a long held view of neuronal activity.

SeminarNeuroscienceRecording

A robust neural integrator based on the interactions of three time scales

Bard Ermentrout
University of Pittsburgh
Nov 10, 2020

Neural integrators are circuits that are able to code analog information such as spatial location or amplitude. Storing amplitude requires the network to have a large number of attractors. In classic models with recurrent excitation, such networks require very careful tuning to behave as integrators and are not robust to small mistuning of the recurrent weights. In this talk, I introduce a circuit with recurrent connectivity that is subjected to a slow subthreshold oscillation (such as the theta rhythm in the hippocampus). I show that such a network can robustly maintain many discrete attracting states. Furthermore, the firing rates of the neurons in these attracting states are much closer to those seen in recordings of animals. I show the mechanism for this can be explained by the instability regions of the Mathieu equation. I then extend the model in various ways and, for example, show that in a spatially distributed network, it is possible to code location and amplitude simultaneously. I show that the resulting mean field equations are equivalent to a certain discontinuous differential equation.

SeminarNeuroscienceRecording

Burst-dependent synaptic plasticity can coordinate learning in hierarchical circuits

Richard Naud
University of Ottawa
Aug 31, 2020

Synaptic plasticity is believed to be a key physiological mechanism for learning. It is well-established that it depends on pre and postsynaptic activity. However, models that rely solely on pre and postsynaptic activity for synaptic changes have, to date, not been able to account for learning complex tasks that demand hierarchical networks. Here, we show that if synaptic plasticity is regulated by high-frequency bursts of spikes, then neurons higher in the hierarchy can coordinate the plasticity of lower-level connections. Using simulations and mathematical analyses, we demonstrate that, when paired with short-term synaptic dynamics, regenerative activity in the apical dendrites, and synaptic plasticity in feedback pathways, a burst-dependent learning rule can solve challenging tasks that require deep network architectures. Our results demonstrate that well-known properties of dendrites, synapses, and synaptic plasticity are sufficient to enable sophisticated learning in hierarchical circuits.

SeminarNeuroscienceRecording

Mean-field models for finite-size populations of spiking neurons

Tilo Schwalger
TU Berlin
Jun 7, 2020

Firing-rate (FR) or neural-mass models are widely used for studying computations performed by neural populations. Despite their success, classical firing-rate models do not capture spike timing effects on the microscopic level such as spike synchronization and are difficult to link to spiking data in experimental recordings. For large neuronal populations, the gap between the spiking neuron dynamics on the microscopic level and coarse-grained FR models on the population level can be bridged by mean-field theory formally valid for infinitely many neurons. It remains however challenging to extend the resulting mean-field models to finite-size populations with biologically realistic neuron numbers per cell type (mesoscopic scale). In this talk, I present a mathematical framework for mesoscopic populations of generalized integrate-and-fire neuron models that accounts for fluctuations caused by the finite number of neurons. To this end, I will introduce the refractory density method for quasi-renewal processes and show how this method can be generalized to finite-size populations. To demonstrate the flexibility of this approach, I will show how synaptic short-term plasticity can be incorporated in the mesoscopic mean-field framework. On the other hand, the framework permits a systematic reduction to low-dimensional FR equations using the eigenfunction method. Our modeling framework enables a re-examination of classical FR models in computational neuroscience under biophysically more realistic conditions.

ePoster

Predicting sensory modulation of precise spike timing for motor control

Usama Sikandar, Hannah Choi, Joy Putney, Hengye Yang, Silvia Ferrari, Simon Sponberg

COSYNE 2023

ePoster

Adenosine and astrocytes determine the developmental dynamics of spike timing-dependent plasticity in the somatosensory cortex

Irene Martinez-Gallego, Mikel Pérez-Rodríguez, Heriberto Coatl-Cuaya, Antonio Rodriguez-Moreno

FENS Forum 2024

ePoster

Two forms of presynaptic spike timing-dependent depression at entorhinal cortex-hippocampal synapses are mediated by astrocyte activity

Irene Martínez Gallego, Heriberto Coatl Cuaya, Antonio Rodríguez Moreno

FENS Forum 2024

ePoster

The role of neocortical and hippocampal presynaptic NMDA receptors in the induction of spike timing-dependent long-term depression

Matthew Roxby, Ole Paulsen

FENS Forum 2024