← Back

State of the Art

Topic spotlight
TopicWorld Wide

State Of The Art

Discover seminars, jobs, and research tagged with State Of The Art across World Wide.
8 curated items8 Seminars
Updated over 1 year ago
8 items · State Of The Art
8 results
SeminarNeuroscience

Multiphoton imaging with next-generation indicators

Manuel Mohr
Stanford University
Jun 29, 2021

Two-photon (2P) in vivo functional imaging of genetically encoded fluorescent Ca2+indicators (GECIs) for neuronal activity has become a broadly applied standard tool in modern neuroscience, because it allows simultaneous imaging of the activity of many neurons at high spatial resolution within living animals. Unfortunately, the most commonly used light-sources – tunable femtosecond pulsed ti:sapphire lasers – can be prohibitively expensive for many labs and fall short of delivering sufficient powers for some new ultra-fast 2P microscopy modalities. Inexpensive homebuilt or industrial light sources such as Ytterbium fiber lasers (YbFLs) show great promise to overcome these limitations as they are becoming widely available at costs orders of magnitude lower and power outputs of up to many times higher than conventional ti:sapphire lasers. However, these lasers are typically bound to emitting a single wavelength (i.e., not tunable) centered around 1020-1060 nm, which fails to efficiently excite state of the art green GECIs such as jGCaMP7 or 8. To this end, we designed and characterized spectral variants (yellow CaMP = YCaMP) of the ultrasensitive genetically encoded calcium indicator jGCaMP7, that allows for efficient 2P-excitation at wavelengths above 1010nm. In this talk I will give a brief overview over some of the reasons why using a fiber laser for 2P excitation might be right for you. I will talk about the development of jYCaMP and some exciting new experimental avenues that it has opened while touching on the prospect that shifting biosensors yellow could have for the 2P imaging community. Please join me for an interesting and fun discussion on whether “yellow is the new green” after the talk!

SeminarNeuroscience

Dynamical Neuromorphic Systems

Julie Grollier
CNRS/Thales lab, Palaiseau, France
Jun 14, 2021

In this talk, I aim to show that the dynamical properties of emerging nanodevices can accelerate the development of smart, and environmentally friendly chips that inherently learn through their physics. The goal of neuromorphic computing is to draw inspiration from the architecture of the brain to build low-power circuits for artificial intelligence. I will first give a brief overview of the state of the art of neuromorphic computing, highlighting the opportunities offered by emerging nanodevices in this field, and the associated challenges. I will then show that the intrinsic dynamical properties of these nanodevices can be exploited at the device and algorithmic level to assemble systems that infer and learn though their physics. I will illustrate these possibilities with examples from our work on spintronic neural networks that communicate and compute through their microwave oscillations, and on an algorithm called Equilibrium Propagation that minimizes both the error and energy of a dynamical system.

SeminarNeuroscienceRecording

Data-driven Artificial Social Intelligence: From Social Appropriateness to Fairness

Hatice Gunes
Department of Computer Science and Technology, University of Cambridge
Mar 15, 2021

Designing artificially intelligent systems and interfaces with socio-emotional skills is a challenging task. Progress in industry and developments in academia provide us a positive outlook, however, the artificial social and emotional intelligence of the current technology is still limited. My lab’s research has been pushing the state of the art in a wide spectrum of research topics in this area, including the design and creation of new datasets; novel feature representations and learning algorithms for sensing and understanding human nonverbal behaviours in solo, dyadic and group settings; designing longitudinal human-robot interaction studies for wellbeing; and investigating how to mitigate the bias that creeps into these systems. In this talk, I will present some of my research team’s explorations in these areas including social appropriateness of robot actions, virtual reality based cognitive training with affective adaptation, and bias and fairness in data-driven emotionally intelligent systems.

SeminarNeuroscience

European University for Brain and Technology Virtual Opening

Virtual Opening
European University for Brain and Technology (NeurotechEU)
Dec 15, 2020

The European University for Brain and Technology, NeurotechEU, is opening its doors on the 16th of December. From health & healthcare to learning & education, Neuroscience has a key role in addressing some of the most pressing challenges that we face in Europe today. Whether the challenge is the translation of fundamental research to advance the state of the art in prevention, diagnosis or treatment of brain disorders or explaining the complex interactions between the brain, individuals and their environments to design novel practices in cities, schools, hospitals, or companies, brain research is already providing solutions for society at large. There has never been a branch of study that is as inter- and multi-disciplinary as Neuroscience. From the humanities, social sciences and law to natural sciences, engineering and mathematics all traditional disciplines in modern universities have an interest in brain and behaviour as a subject matter. Neuroscience has a great promise to become an applied science, to provide brain-centred or brain-inspired solutions that could benefit the society and kindle a new economy in Europe. The European University of Brain and Technology (NeurotechEU) aims to be the backbone of this new vision by bringing together eight leading universities, 250+ partner research institutions, companies, societal stakeholders, cities, and non-governmental organizations to shape education and training for all segments of society and in all regions of Europe. We will educate students across all levels (bachelor’s, master’s, doctoral as well as life-long learners) and train the next generation multidisciplinary scientists, scholars and graduates, provide them direct access to cutting-edge infrastructure for fundamental, translational and applied research to help Europe address this unmet challenge.