← Back

Structural Changes

Topic spotlight
TopicWorld Wide

structural changes

Discover seminars, jobs, and research tagged with structural changes across World Wide.
11 curated items9 Seminars2 ePosters
Updated almost 4 years ago
11 items · structural changes
11 results
SeminarNeuroscience

Dynamic structural neuroplasticity in the bilingual brain

Christos Pliatsikas
University of Reading, UK
Feb 28, 2022

Research on the effects of bilingualism on the structure of the brain has so far yielded variable patterns. Although it cannot be disputed that learning and using additional languages restructures the brain, the reported effects vary considerably, including both increases and reductions in grey matter volume and white matter diffusivity. This presentation reviews the available evidence and compares it to patterns from other domains of skill acquisition, culminating in the Dynamic Restructuring Model, a theory which synthesises the available evidence from the perspective of experience-based neuroplasticity. New corroborating evidence is also presented from healthy young and older bilinguals, and the presentation concludes with the implications of these effects for the ageing brain.

SeminarNeuroscienceRecording

New Mechanisms of Extracellular Matrix Remodeling

Silvio Rizzoli
University of Goettingen School of Medicine
Jan 30, 2022

In the adult brain, synapses are tightly enwrapped by lattices of extracellular matrix that consist of extremely long-lived molecules. These lattices are deemed to stabilize synapses, restrict the reorganization of their transmission machinery, and prevent them from undergoing structural or morphological changes. At the same time, they are expected to retain some degree of flexibility to permit occasional events of synaptic plasticity. The recent understanding that structural changes to synapses are significantly more frequent than previously assumed (occurring even on a timescale of minutes) has called for a mechanism that allows continual and energy-efficient remodeling of the ECM at synapses. I review in the talk our recent work showcasing such a process, based on the constitutive recycling of synaptic ECM molecules. I discuss the key characteristics of this mechanism, focusing on its roles in mediating synaptic transmission and plasticity, and speculate on additional potential functions in neuronal signaling.

SeminarNeuroscience

Brain chart for the human lifespan

Richard Bethlehem
Director of Neuroimaging, Autism Research Centre, University of Cambridge, United Kingdom
Jan 18, 2022

Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, no reference standards currently exist to quantify individual differences in neuroimaging metrics over time, in contrast to growth charts for anthropometric traits such as height and weight. Here, we built an interactive resource to benchmark brain morphology, www.brainchart.io, derived from any current or future sample of magnetic resonance imaging (MRI) data. With the goal of basing these reference charts on the largest and most inclusive dataset available, we aggregated 123,984 MRI scans from 101,457 participants aged from 115 days post-conception through 100 postnatal years, across more than 100 primary research studies. Cerebrum tissue volumes and other global or regional MRI metrics were quantified by centile scores, relative to non-linear trajectories of brain structural changes, and rates of change, over the lifespan. Brain charts identified previously unreported neurodevelopmental milestones; showed high stability of individual centile scores over longitudinal assessments; and demonstrated robustness to technical and methodological differences between primary studies. Centile scores showed increased heritability compared to non-centiled MRI phenotypes, and provided a standardised measure of atypical brain structure that revealed patterns of neuroanatomical variation across neurological and psychiatric disorders. In sum, brain charts are an essential first step towards robust quantification of individual deviations from normative trajectories in multiple, commonly-used neuroimaging phenotypes. Our collaborative study proves the principle that brain charts are achievable on a global scale over the entire lifespan, and applicable to analysis of diverse developmental and clinical effects on human brain structure.

SeminarNeuroscienceRecording

Activity dependent myelination: a mechanism for learning and regeneration?

Thóra Káradóttir
WT-MRC Stem Cell Institute, University of Cambridge
Oct 11, 2021

The CNS is responsive to an ever-changing environment. Until recently, studies of neural plasticity focused almost exclusively on functional and structural changes of neuronal synapses. In recent years, myelin plasticity has emerged as a potential modulator of neural networks. Myelination of previously unmyelinated axons, and changes in the structure on already-myelinated axons, can have large effects on network function. The heterogeneity of the extent of how axons in the CNS are myelinated offers diverse scope for dynamic myelin changes to fine-tune neural circuits. The traditionally held view of myelin as a passive insulator of axons is now changing to one of lifelong changes in myelin, modulated by neuronal activity and experience. Myelin, produced by oligodendrocytes (OLs), is essential for normal brain function, as it provides fast signal transmission, promotes synchronization of neuronal signals and helps to maintain neuronal function. OLs differentiate from oligodendrocyte precursor cells (OPCs), which are distributed throughout the adult brain, and myelination continues into late adulthood. OPCs can sense neuronal activity as they receive synaptic inputs from neurons and express voltage-gated ion channels and neurotransmitter receptors, and differentiate into myelinating OLs in response to changes in neuronal activity. This lecture will explore to what extent myelin plasticity occurs in adult animals, whether myelin changes occur in non-motor learning tasks, especially in learning and memory, and questions whether myelin plasticity and myelin regeneration are two sides of the same coin.

SeminarNeuroscience

Brief Sensory Deprivation Triggers Cell Type-Specific Structural and Functional Plasticity in Olfactory Bulb Neurons

Li Huang, Joseph Innes, Emily Winson-Bushby
University of Cambridge, PDN
Apr 27, 2021

Can alterations in experience trigger different plastic modifications in neuronal structure and function, and if so, how do they integrate at the cellular level? To address this question, we interrogated circuitry in the mouse olfactory bulb responsible for the earliest steps in odor processing. We induced experience-dependent plasticity in mice of either sex by blocking one nostril for one day, a minimally invasive manipulation that leaves the sensory organ undamaged and is akin to the natural transient blockage suffered during common mild rhinal infections. We found that such brief sensory deprivation produced structural and functional plasticity in one highly specialized bulbar cell type: axon-bearing dopaminergic neurons in the glomerular layer. After 24 h naris occlusion, the axon initial segment (AIS) in bulbar dopaminergic neurons became significantly shorter, a structural modification that was also associated with a decrease in intrinsic excitability. These effects were specific to the AIS-positive dopaminergic subpopulation because no experience-dependent alterations in intrinsic excitability were observed in AIS-negative dopaminergic cells. Moreover, 24 h naris occlusion produced no structural changes at the AIS of bulbar excitatory neurons, mitral/tufted and external tufted cells, nor did it alter their intrinsic excitability. By targeting excitability in one specialized dopaminergic subpopulation, experience-dependent plasticity in early olfactory networks might act to fine-tune sensory processing in the face of continually fluctuating inputs. (https://www.jneurosci.org/content/41/10/2135)

SeminarNeuroscience

Myelination: another form of brain plasticity

Giulia Bonetto
University of Cambridge, MRC Cambridge Stem Cell Institute
Mar 9, 2021

Studies of neural circuit plasticity focus almost exclusively on functional and structural changes of neuronal synapses. In recent years, however, myelin plasticity has emerged as a potential modulator of neuronal networks. Myelination of previously unmyelinated axons and changes in the structure on already-myelinated axons can have large effects on the function of neuronal networks. Yet myelination has been mostly studied in relation to its functional and metabolic activity. Myelin modifications are increasingly being implicated as a mechanism for sensory-motor learning and unpublished data from our lab indicate that myelination also occurs during cognitive non-motor learning. It is, however, unclear how specific these myelin changes are and even less is known of the underlying mechanisms of learning-evoked myelin plasticity. In this journal club, Dr Giulia Bonetto will provide a general overview on myelin plasticity. Additionally, she will present new data addressing the role of myelin plasticity in cognitive non-motor learning.

SeminarNeuroscience

Neuronal encoding of drug choices and preference in the orbitofrontal cortex

Karine Guillem
CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
Dec 10, 2020

Human neuroimaging research has consistently shown that drug addiction is associated with structural and functional changes within the orbitofrontal cortex (OFC). In view of the important role of the OFC in value-based decision-making, these changes have been hypothesised to bias choice towards drug use despite and at the expense of other competing pursuits, thereby explaining drug addiction. Here I will present in vivo recording data in the OFC supporting this hypothesis in a choice-based model of addiction where rats could choose between two actions, one rewarded by a drug (cocaine or heroin), the other by a nondrug alternative (saccharin).

SeminarPhysics of LifeRecording

Dynamic structural changes in the nucleosome during gene regulation

Hitoshi Kurumizaka
University of Tokyo
Jul 28, 2020
ePoster

Endoplasmic reticulum quality control machinery validates structural changes, not functionality, of NMDA receptors

Marek Ladislav, Jakub Netolicky, Marharyta Kolcheva, Petra Zahumenska, Anna Misiachna, Martin Horak

FENS Forum 2024

ePoster

Rodent propionic acid model of autism: Emotional and ultrastructural changes in rat amygdala

Pikria Khomasuridze, Giorgi Lobzhanidze, Nadezhda Japaridze, Mzia Zhvania, Fuad Rzayev, Eldar Gasimov

FENS Forum 2024