Structure Mapping Theory
Structure Mapping Theory
Mechanisms of relational structure mapping across analogy tasks
Following the seminal structure mapping theory by Dedre Gentner, the process of mapping the corresponding structures of relations defining two analogs has been understood as a key component of analogy making. However, not without a merit, in recent years some semantic, pragmatic, and perceptual aspects of analogy mapping attracted primary attention of analogy researchers. For almost a decade, our team have been re-focusing on relational structure mapping, investigating its potential mechanisms across various analogy tasks, both abstract (semantically-lean) and more concrete (semantically-rich), using diverse methods (behavioral, correlational, eye-tracking, EEG). I will present the overview of our main findings. They suggest that structure mapping (1) consists of an incremental construction of the ultimate mental representation, (2) which strongly depends on working memory resources and reasoning ability, (3) even if as little as a single trivial relation needs to be represented mentally. The effective mapping (4) is related to the slowest brain rhythm – the delta band (around 2-3 Hz) – suggesting its highly integrative nature. Finally, we have developed a new task – Graph Mapping – which involves pure mapping of two explicit relational structures. This task allows for precise investigation and manipulation of the mapping process in experiments, as well as is one of the best proxies of individual differences in reasoning ability. Structure mapping is as crucial to analogy as Gentner advocated, and perhaps it is crucial to cognition in general.
Implementing structure mapping as a prior in deep learning models for abstract reasoning
Building conceptual abstractions from sensory information and then reasoning about them is central to human intelligence. Abstract reasoning both relies on, and is facilitated by, our ability to make analogies about concepts from known domains to novel domains. Structure Mapping Theory of human analogical reasoning posits that analogical mappings rely on (higher-order) relations and not on the sensory content of the domain. This enables humans to reason systematically about novel domains, a problem with which machine learning (ML) models tend to struggle. We introduce a two-stage neural net framework, which we label Neural Structure Mapping (NSM), to learn visual analogies from Raven's Progressive Matrices, an abstract visual reasoning test of fluid intelligence. Our framework uses (1) a multi-task visual relationship encoder to extract constituent concepts from raw visual input in the source domain, and (2) a neural module net analogy inference engine to reason compositionally about the inferred relation in the target domain. Our NSM approach (a) isolates the relational structure from the source domain with high accuracy, and (b) successfully utilizes this structure for analogical reasoning in the target domain.