Subiculum
subiculum
Minute-scale periodic sequences in medial entorhinal cortex
The medial entorhinal cortex (MEC) hosts many of the brain’s circuit elements for spatial navigation and episodic memory, operations that require neural activity to be organized across long durations of experience. While location is known to be encoded by a plethora of spatially tuned cell types in this brain region, little is known about how the activity of entorhinal cells is tied together over time. Among the brain’s most powerful mechanisms for neural coordination are network oscillations, which dynamically synchronize neural activity across circuit elements. In MEC, theta and gamma oscillations provide temporal structure to the neural population activity at subsecond time scales. It remains an open question, however, whether similarly coordination occurs in MEC at behavioural time scales, in the second-to-minute regime. In this talk I will show that MEC activity can be organized into a minute-scale oscillation that entrains nearly the entire cell population, with periods ranging from 10 to 100 seconds. Throughout this ultraslow oscillation, neural activity progresses in periodic and stereotyped sequences. The oscillation sometimes advances uninterruptedly for tens of minutes, transcending epochs of locomotion and immobility. Similar oscillatory sequences were not observed in neighboring parasubiculum or in visual cortex. The ultraslow periodic sequences in MEC may have the potential to couple its neurons and circuits across extended time scales and to serve as a scaffold for processes that unfold at behavioural time scales.
The functional architecture of the human entorhinal-hippocampal circuitry
Cognitive functions like episodic memory require the formation of cohesive representations. Critical for that process is the entorhinal-hippocampal circuitry’s interaction with cortical information streams and the circuitry’s inner communication. With ultra-high field functional imaging we investigated the functional architecture of the human entorhinal-hippocampal circuitry. We identified an organization that is consistent with convergence of information in anterior and lateral entorhinal subregions and the subiculum/CA1 border while keeping a second route specific for scene processing in a posterior-medial entorhinal subregion and the distal subiculum. Our findings agree with information flow along information processing routes which functionally split the entorhinal-hippocampal circuitry along its transversal axis. My talk will demonstrate how ultra-high field imaging in humans can bridge the gap between anatomical and electrophysiological findings in rodents and our understanding of human cognition. Moreover, I will point out the implications that basic research on functional architecture has for cognitive and clinical research perspectives.
Traveling UP states in the post-subiculum reveal an anatomical gradient of intrinsic properties
COSYNE 2023
Parvalbumin interneurons regulate recall of associations and novelty coding by modulating attractor dynamics in ventral subiculum
COSYNE 2025
Crosstalk between the subiculum and sleep-wake regulation: A preliminary study
FENS Forum 2024
The differential role of the subiculum > hypothalamic paths in diverse contextual fear responses to a live predator and physically harmful events
FENS Forum 2024
Distinct manifold encoding of navigational information in the subiculum and hippocampus
FENS Forum 2024
Imaging population activity of head direction neurons in the presubiculum of freely behaving mice
FENS Forum 2024
Integrative properties of bursting vs. regular firing subiculum neurons investigated via dynamic clamp
FENS Forum 2024