T Cells
t cells
Single-neuron correlates of perception and memory in the human medial temporal lobe
The human medial temporal lobe contains neurons that respond selectively to the semantic contents of a presented stimulus. These "concept cells" may respond to very different pictures of a given person and even to their written or spoken name. Their response latency is far longer than necessary for object recognition, they follow subjective, conscious perception, and they are found in brain regions that are crucial for declarative memory formation. It has thus been hypothesized that they may represent the semantic "building blocks" of episodic memories. In this talk I will present data from single unit recordings in the hippocampus, entorhinal cortex, parahippocampal cortex, and amygdala during paradigms involving object recognition and conscious perception as well as encoding of episodic memories in order to characterize the role of concept cells in these cognitive functions.
Genetic and epigenetic underpinnings of neurodegenerative disorders
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzheimer’s, autism, and cancer. Mechanisms of somatic cell reprogramming to an embryonic pluripotent state are explored, utilizing patient-specific pluripotent cells to model and analyze neurodegenerative diseases.
Roles of inhibition in stabilizing and shaping the response of cortical networks
Inhibition has long been thought to stabilize the activity of cortical networks at low rates, and to shape significantly their response to sensory inputs. In this talk, I will describe three recent collaborative projects that shed light on these issues. (1) I will show how optogenetic excitation of inhibition neurons is consistent with cortex being inhibition stabilized even in the absence of sensory inputs, and how this data can constrain the coupling strengths of E-I cortical network models. (2) Recent analysis of the effects of optogenetic excitation of pyramidal cells in V1 of mice and monkeys shows that in some cases this optogenetic input reshuffles the firing rates of neurons of the network, leaving the distribution of rates unaffected. I will show how this surprising effect can be reproduced in sufficiently strongly coupled E-I networks. (3) Another puzzle has been to understand the respective roles of different inhibitory subtypes in network stabilization. Recent data reveal a novel, state dependent, paradoxical effect of weakening AMPAR mediated synaptic currents onto SST cells. Mathematical analysis of a network model with multiple inhibitory cell types shows that this effect tells us in which conditions SST cells are required for network stabilization.
T cells specific for alpha-myosin drive immunotherapy-related myocarditis
Nociceptor neurons direct goblet cells via a CGRP-RAMP1 axis to drive mucus production and gut barrier protection
Private oxytocin supply and its receptors in the hypothalamus for social avoidance learning
Many animals live in complex social groups. To survive, it is essential to know who to avoid and who to interact. Although naïve mice are naturally attracted to any adult conspecifics, a single defeat experience could elicit social avoidance towards the aggressor for days. The neural mechanisms underlying the behavior switch from social approach to social avoidance remains incompletely understood. Here, we identify oxytocin neurons in the retrochiasmatic supraoptic nucleus (SOROXT) and oxytocin receptor (OXTR) expressing cells in the anterior subdivision of ventromedial hypothalamus, ventrolateral part (aVMHvlOXTR) as a key circuit motif for defeat-induced social avoidance learning. After defeat, aVMHvlOXTR cells drastically increase their responses to aggressor cues. This response change is functionally important as optogenetic activation of aVMHvlOXTR cells elicits time-locked social avoidance towards a benign social target whereas inactivating the cells suppresses defeat-induced social avoidance. Furthermore, OXTR in the aVMHvl is itself essential for the behavior change. Knocking out OXTR in the aVMHvl or antagonizing the receptor during defeat, but not during post-defeat social interaction, impairs defeat-induced social avoidance. aVMHvlOXTR receives its private supply of oxytocin from SOROXT cells. SOROXT is highly activated by the noxious somatosensory inputs associated with defeat. Oxytocin released from SOROXT depolarizes aVMHvlOXTR cells and facilitates their synaptic potentiation, and hence, increases aVMHvlOXTR cell responses to aggressor cues. Ablating SOROXT cells impairs defeat-induced social avoidance learning whereas activating the cells promotes social avoidance after a subthreshold defeat experience. Altogether, our study reveals an essential role of SOROXT-aVMHvlOXTR circuit in defeat-induced social learning and highlights the importance of hypothalamic oxytocin system in social ranking and its plasticity.
A draft connectome for ganglion cell types of the mouse retina
The visual system of the brain is highly parallel in its architecture. This is clearly evident in the outputs of the retina, which arise from neurons called ganglion cells. Work in our lab has shown that mammalian retinas contain more than a dozen distinct types of ganglion cells. Each type appears to filter the retinal image in a unique way and to relay this processed signal to a specific set of targets in the brain. My students and I are working to understand the meaning of this parallel organization through electrophysiological and anatomical studies. We record from light-responsive ganglion cells in vitro using the whole-cell patch method. This allows us to correlate directly the visual response properties, intrinsic electrical behavior, synaptic pharmacology, dendritic morphology and axonal projections of single neurons. Other methods used in the lab include neuroanatomical tracing techniques, single-unit recording and immunohistochemistry. We seek to specify the total number of ganglion cell types, the distinguishing characteristics of each type, and the intraretinal mechanisms (structural, electrical, and synaptic) that shape their stimulus selectivities. Recent work in the lab has identified a bizarre new ganglion cell type that is also a photoreceptor, capable of responding to light even when it is synaptically uncoupled from conventional (rod and cone) photoreceptors. These ganglion cells appear to play a key role in resetting the biological clock. It is just this sort of link, between a specific cell type and a well-defined behavioral or perceptual function, that we seek to establish for the full range of ganglion cell types. My research concerns the structural and functional organization of retinal ganglion cells, the output cells of the retina whose axons make up the optic nerve. Ganglion cells exhibit great diversity both in their morphology and in their responses to light stimuli. On this basis, they are divisible into a large number of types (>15). Each ganglion-cell type appears to send its outputs to a specific set of central visual nuclei. This suggests that ganglion cell heterogeneity has evolved to provide each visual center in the brain with pre-processed representations of the visual scene tailored to its specific functional requirements. Though the outline of this story has been appreciated for some time, it has received little systematic exploration. My laboratory is addressing in parallel three sets of related questions: 1) How many types of ganglion cells are there in a typical mammalian retina and what are their structural and functional characteristics? 2) What combination of synaptic networks and intrinsic membrane properties are responsible for the characteristic light responses of individual types? 3) What do the functional specializations of individual classes contribute to perceptual function or to visually mediated behavior? To pursue these questions, we label retinal ganglion cells by retrograde transport from the brain; analyze in vitro their light responses, intrinsic membrane properties and synaptic pharmacology using the whole-cell patch clamp method; and reveal their morphology with intracellular dyes. Recently, we have discovered a novel ganglion cell in rat retina that is intrinsically photosensitive. These ganglion cells exhibit robust light responses even when all influences from classical photoreceptors (rods and cones) are blocked, either by applying pharmacological agents or by dissociating the ganglion cell from the retina. These photosensitive ganglion cells seem likely to serve as photoreceptors for the photic synchronization of circadian rhythms, the mechanism that allows us to overcome jet lag. They project to the circadian pacemaker of the brain, the suprachiasmatic nucleus of the hypothalamus. Their temporal kinetics, threshold, dynamic range, and spectral tuning all match known properties of the synchronization or "entrainment" mechanism. These photosensitive ganglion cells innervate various other brain targets, such as the midbrain pupillary control center, and apparently contribute to a host of behavioral responses to ambient lighting conditions. These findings help to explain why circadian and pupillary light responses persist in mammals, including humans, with profound disruption of rod and cone function. Ongoing experiments are designed to elucidate the phototransduction mechanism, including the identity of the photopigment and the nature of downstream signaling pathways. In other studies, we seek to provide a more detailed characterization of the photic responsiveness and both morphological and functional evidence concerning possible interactions with conventional rod- and cone-driven retinal circuits. These studies are of potential value in understanding and designing appropriate therapies for jet lag, the negative consequences of shift work, and seasonal affective disorder.
As soon as there was life there was danger
Organisms face challenges to survival throughout life. When we freeze or flee in danger, we often feel fear. Tracing the deep history of danger gives a different perspective. The first cells living billions of years ago had to detect and respond to danger in order to survive. Life is about not being dead, and behavior is a major way that organisms hold death off. Although behavior does not require a nervous system, complex organisms have brain circuits for detecting and responding to danger, the deep roots of which go back to the first cells. But these circuits do not make fear, and fear is not the cause of why we freeze or flee. Fear a human invention; a construct we use to account for what happens in our minds when we become aware that we are in harm’s way. This requires a brain that can personally know that it existed in the past, that it is the entity that might be harmed in the present, and that it will cease to exist it the future. If other animals have conscious experiences, they cannot have the kinds of conscious experiences we have because they do not have the kinds of brains we have. This is not meant as a denial of animal consciousness; it is simply a statement about the fact that every species has a different brain. Nor is it a declaration about the wonders of the human brain, since we have done some wonderful, but also horrific, things with our brains. In fact, we are on the way to a climatic disaster that will not, as some suggest, destroy the Earth. But it will make it inhabitable for our kind, and other organisms with high energy demands. Bacteria have made it for billions of years and will likely be fine. The rest is up for grabs, and, in a very real sense, up to us.
3D Printing Cellular Communities: Mammalian Cells, Bacteria, And Beyond
While the motion and collective behavior of cells are well-studied on flat surfaces or in unconfined liquid media, in most natural settings, cells thrive in complex 3D environments. Bioprinting processes are capable of structuring cells in 3D and conventional bioprinting approaches address this challenge by embedding cells in bio-degradable polymer networks. However, heterogeneity in network structure and biodegradation often preclude quantitative studies of cell behavior in specified 3D architectures. Here, I will present a new approach to 3D bioprinting of cellular communities that utilizes jammed, granular polyelectrolyte microgels as a support medium. The self-healing nature of this medium allows the creation of highly precise cellular communities and tissue-like structures by direct injection of cells inside the 3D medium. Further, the transparent nature of this medium enables precise characterization of cellular behavior. I will describe two examples of my work using this platform to study the behavior of two different classes of cells in 3D. First, I will describe how we interrogate the growth, viability, and migration of mammalian cells—ranging from epithelial cells, cancer cells, and T cells—in the 3D pore space. Second, I will describe how we interrogate the migration of E. coli bacteria through the 3D pore space. Direct visualization enables us to reveal a new mode of motility exhibited by individual cells, in stark contrast to the paradigm of run-and-tumble motility, in which cells are intermittently and transiently trapped as they navigate the pore space; further, analysis of these dynamics enables prediction of single-cell transport over large length and time scales. Moreover, we show that concentrated populations of E. coli can collectively migrate through a porous medium—despite being strongly confined—by chemotactically “surfing” a self-generated nutrient gradient. Together, these studies highlight how the jammed microgel medium provides a powerful platform to design and interrogate complex cellular communities in 3D—with implications for tissue engineering, microtissue mechanics, studies of cellular interactions, and biophysical studies of active matter.
Memory, learning to learn, and control of cognitive representations
Biological neural networks can represent information in the collective action potential discharge of neurons, and store that information amongst the synaptic connections between the neurons that both comprise the network and govern its function. The strength and organization of synaptic connections adjust during learning, but many cognitive neural systems are multifunctional, making it unclear how continuous activity alternates between the transient and discrete cognitive functions like encoding current information and recollecting past information, without changing the connections amongst the neurons. This lecture will first summarize our investigations of the molecular and biochemical mechanisms that change synaptic function to persistently store spatial memory in the rodent hippocampus. I will then report on how entorhinal cortex-hippocampus circuit function changes during cognitive training that creates memory, as well as learning to learn in mice. I will then describe how the hippocampus system operates like a competitive winner-take-all network, that, based on the dominance of its current inputs, self organizes into either the encoding or recollection information processing modes. We find no evidence that distinct cells are dedicated to those two distinct functions, rather activation of the hippocampus information processing mode is controlled by a subset of dentate spike events within the network of learning-modified, entorhinal-hippocampus excitatory and inhibitory synapses.
Adult neurogenesis in mouse hippocampus
Dr. Aixa V. Morales has been working for more than 20 years in the field of Developmental Biology and from 2005, she is the PI of the laboratory on “Molecular Control of Neurogenesis” at Cajal Institute. Along these years, she has contributed to understanding the control of neurogenesis during development, the dorsoventral specification of neural progenitors, and the temporal control of the migration of neural crest cells. More recently, her lab interest moved towards understanding modulation of adult neurogenesis. Her lab current interest is the control of quiescence, as a mechanism of long-term neural stem cell maintenance in adult niches.
Memory, learning to learn, and control of cognitive representations
Biological neural networks can represent information in the collective action potential discharge of neurons, and store that information amongst the synaptic connections between the neurons that both comprise the network and govern its function. The strength and organization of synaptic connections adjust during learning, but many cognitive neural systems are multifunctional, making it unclear how continuous activity alternates between the transient and discrete cognitive functions like encoding current information and recollecting past information, without changing the connections amongst the neurons. This lecture will first summarize our investigations of the molecular and biochemical mechanisms that change synaptic function to persistently store spatial memory in the rodent hippocampus. I will then report on how entorhinal cortex-hippocampus circuit function changes during cognitive training that creates memory, as well as learning to learn in mice. I will then describe how the hippocampus system operates like a competitive winner-take-all network, that, based on the dominance of its current inputs, self organizes into either the encoding or recollection information processing modes. We find no evidence that distinct cells are dedicated to those two distinct functions, rather activation of the hippocampus information processing mode is controlled by a subset of dentate spike events within the network of learning-modified, entorhinal-hippocampus excitatory and inhibitory synapses.
Organization and control of hippocampal circuits in epilepsy
Basket cells are key GABAergic inhibitory interneurons that target the somata and proximal dendrites, enabling efficient control of the timing and rate of spiking of their postsynaptic targets. In all cortical circuits, there are two major types of basket cell that exhibit striking developmental, molecular, anatomical, and physiological differences. In this talk, I will discuss recent results that reveal the tightly coupled complementarity of these two key microcircuit regulatory modules, demonstrating a novel form of brain-state-specific segregation of inhibition during spontaneous behavior, with implications for the assessment of dysregulated inhibition in epilepsy. In addition, I will describe recent advances in our understanding of the spatio-temporal dynamics of endocannabinoid signaling in hippocampal circuits and discuss how abnormal amplification of these activity-dependent signaling processes leads to surprising downstream effects in seizures.
Self-organization of chemically active colloids with non-reciprocal interactions
Cells and microorganisms produce and consume all sorts of chemicals, from nutrients to signalling molecules. The same happens at the nanoscale inside cells themselves, where enzymes catalyse the production and consumption of the chemicals needed for life. In this work, we have found a generic mechanism by which such chemically-active particles, be it cells or enzymes or engineered synthetic colloids, can "sense" each other and ultimately self- organize in a multitude of ways. A peculiarity of these chemical-mediated interactions is that they break action-reaction symmetry : for example, one particle may be repelled from a second particle, which is in turn attracted to the first one, so that it ends up "chasing" it. Such chasing interactions allow for the formation of large clusters of particles that "swim" autonomously. Regarding enzymes, we find that they can spontaneously aggregate into clusters with precisely the right composition, so that the product of one enzyme is passed on, without lack or excess, to the next enzyme in the metabolic cascade.
A no-report paradigm reveals that face cells multiplex consciously perceived and suppressed stimuli
Having conscious experience is arguably the most important reason why it matters to us whether we are alive or dead. A powerful paradigm to identify neural correlates of consciousness is binocular rivalry, wherein a constant visual stimulus evokes a varying conscious percept. It has recently been suggested that activity modulations observed during rivalry may represent the act of report rather than the conscious percept itself. Here, we performed single-unit recordings from face patches in macaque inferotemporal (IT) cortex using a novel no-report paradigm in which the animal’s conscious percept was inferred from eye movements. These experiments reveal two new results concerning the neural correlates of consciousness. First, we found that high proportions of IT neurons represented the conscious percept even without active report. Using high-channel recordings, including a new 128-channel Neuropixels-like probe, we were able to decode the conscious percept on single trials. Second, we found that even on single trials, modulation to rivalrous stimuli was weaker than that to unambiguous stimuli, suggesting that cells may encode not only the conscious percept but also the suppressed stimulus. To test this hypothesis, we varied the identity of the suppressed stimulus during binocular rivalry; we found that indeed, we could decode not only the conscious percept but also the suppressed stimulus from neural activity. Moreover, the same cells that were strongly modulated by the conscious percept also tended to be strongly modulated by the suppressed stimulus. Together, our findings indicate that (1) IT cortex possesses a true neural correlate of consciousness even in the absence of report, and (2) this correlate consists of a population code wherein single cells multiplex representation of the conscious percept and veridical physical stimulus, rather than a subset of cells perfectly reflecting consciousness.
Human color perception and double-opponent cells in V1 cortex
Senescencia celular y su impacto en enfermedades neurodegenerativas
Las enfermedades neurodegenerativas como la Enfermedad de Alzheimer, Enfermedad de Parkinson y la Esclerosis Lateral Amiotrófica tienen una prevalencia creciente en nuestra sociedad, de acuerdo con el aumento de la expectativa de vida. Durante el envejecimiento, las células gliales sufren cambios funcionales favoreciendo la “neuroinflamación”, que tiene un reconocido papel patogénico en la progresión de la enfermedad neurodegenerativa. Estudios recientes demuestran que durante el envejecimiento del sistema nervioso se acumulan notablemente células senescentes, tanto de estirpe neuronal como glial. Las células senescentes no proliferan, muchas de ellas exhiben un fenotipo secretor (SASP) con capacidad de inducir inflamación. La eliminación de células senescentes por ablación genética inducida farmacológicamente o por bloqueos de fármacos senolíticos mejoran la neuroinflamación y disminuyen la neurotoxicidad. En la presentación, se realizará una revisión de la bibliografía sobre este tema y se realizará un análisis del potencial terapéutico de fármacos senolíticos como una aproximación terapéutica novedosa de las enfermedades neurodegenerativas.
Virus-like intercellular communication in the nervous system
The neuronal gene Arc is essential for long-lasting information storage in the mammalian brain and mediates various forms of synaptic plasticity. We recently discovered that Arc self-assembles into virus-like capsids that encapsulate RNA. Endogenous Arc protein is released from neurons in extracellular vesicles that mediate the transfer of Arc mRNA into new target cells. Evolutionary analysis indicates that Arc is derived from a vertebrate lineage of Ty3/gypsy retrotransposons, which are also ancestral to retroviruses such as HIV. These findings suggest that Gag retroelements have been repurposed during evolution to mediate intercellular communication in the nervous system that may underlie cognition and memory.
Synapse-specific direction selectivity in retinal bipolar cell axon terminals
The ability to encode the direction of image motion is fundamental to our sense of vision. Direction selectivity along the four cardinal directions is thought to originate in direction-selective ganglion cells (DSGCs), due to directionally-tuned GABAergic suppression by starburst cells. Here, by utilizing two-photon glutamate imaging to measure synaptic release, we reveal that direction selectivity along all four directions arises earlier than expected, at bipolar cell outputs. Thus, DSGCs receive directionally-aligned glutamatergic inputs from bipolar cell boutons. We further show that this bouton-specific tuning relies on cholinergic excitation and GABAergic inhibition from starburst cells. In this way, starburst cells are able to refine directional tuning in the excitatory visual pathway by modulating the activity of DSGC dendrites and their axonal inputs using two different neurotransmitters.
The immunopathology of advanced multiple sclerosis
We recently analyzed a large cohort of multiple sclerosis (MS) autopsy cases of the Netherlands Brain Bank (NBB) and showed that 57% of the lesion in advanced MS is active (containing activated microglia/macrophages). These active lesions correlated with disease severity and differed between males and female MS patients.1 Already in normal appearing white matter microglia show early signs of demyelination.5 T cells are also frequently present in advanced stages of MS and have a tissue resident memory (Trm) phenotype, are more frequently CD8+ then CD4+, are located perivascular, enriched in active and mixed active/inactive MS lesions and correlated with lesion activity, lesion load and disease severity.2-4 Like Trm cells, B cells are located perivascular and were also enriched in active MS lesions but in lower numbers and a proportion of the MS patients had almost no detectable B cells in the regions analyzed. MS patients with limited presence of B cells had less severe MS, and less active and mixed active /inactive lesions. We conclude that advanced MS is characterize by a high innate and adaptive immune activity which is heterogeneous and relates to the clinical disease course.
When spontaneous waves meet angiogenesis: a case study from the neonatal retina
By continuously producing electrical signals, neurones are amongst the most energy-demanding cells in the organism. Resting ionic levels are restored via metabolic pumps that receive the necessary energy from oxygen supplied by blood vessels. Intense spontaneous neural activity is omnipresent in the developing CNS. It occurs during short, well-defined periods that coincide precisely with the timing of angiogenesis. Such coincidence cannot be random; there must be a universal mechanism triggering spontaneous activity concurrently with blood vessels invading neural territories for the first time. However, surprisingly little is known about the role of neural activity per se in guiding angiogenesis. Part of the reason is that it is challenging to study developing neurovascular networks in tri-dimensional space in the brain. We investigate these questions in the neonatal mouse retina, where blood vessels are much easier to visualise because they initially grow in a plane, while waves of spontaneous neural activity (spreading via cholinergic starburst amacrine cells) sweep across the retinal ganglion cell layer, in close juxtaposition with the growing vasculature. Blood vessels reach the periphery by postnatal day (P) 7-8, shortly before the cholinergic waves disappear (at P10). We discovered transient clusters of auto-fluorescent cells that form an annulus around the optic disc, gradually expanding to the periphery, which they reach at the same time as the growing blood vessels. Remarkably, these cells appear locked to the frontline of the growing vasculature. Moreover, by recording waves with a large-scale multielectrode array that enables us to visualise them at pan-retinal level, we found that their initiation points are not random; they follow a developmental centre-to-periphery pattern similar to the clusters and blood vessels. The density of growing blood vessels is higher in cluster areas than in-between clusters at matching eccentricity. The cluster cells appear to be phagocytosed by microglia. Blocking Pannexin1 (PANX1) hemichannels activity with probenecid completely blocks the spontaneous waves and results in the disappearance of the fluorescent cell clusters. We suggest that these transient cells are specialised, hyperactive neurones that form spontaneous activity hotspots, thereby triggering retinal waves through the release of ATP via PANX1 hemichannels. These activity hotspots attract new blood vessels to enhance local oxygen supply. Signalling through PANX1 attracts microglia that establish contact with these cells, eventually eliminating them once blood vessels have reached their vicinity. The auto-fluorescence that characterises the cell clusters may develop only once the process of microglial phagocytosis is initiated.
“LIM Domain Proteins in Cell Mechanotransduction”
My lab studies the design principles of cytoskeletal materials the drive cellular morphogenesis, with a focus on contractile machinery in adherent cells. In addition to force generation, a key feature of these materials are distributed force sensors which allow for rapid assembly, adaptation, repair and disintegration. Here I will discuss our recent identification of 18 proteins from the zyxin, paxillin, Tes and Enigma families with mechanosensitive LIM (Lin11, Isl- 1 & Mec-3) domains. We developed a screen to assess the force-dependent localization of LIM domain-containing region (LCR) from ~30 genes to the actin cytoskeleton and identified features common to their force-sensitive localization. Through in vitro reconstitution, we found that the LCR binds directly to mechanically stressed actin filaments. Moreover, the LCR from the fission yeast protein paxillin-like 1 is also mechanosensitive, suggesting force-sensitivity is highly conserved. We speculate that the evolutionary emergence of contractile F-actin machinery coincided with, or required, proteins that could report on the stresses present there to maintain homeostasis of actively stressed networks.
Meningeal lymphatics and peripheral immunity in brain function and dysfunction
Immune cells and their derived molecules have major impact on brain function. Mice deficient in adaptive immunity have impaired cognitive and social function compared to that of wild-type mice. Importantly, replenishment of the T cell compartment in immune deficient mice restored proper brain function. Despite the robust influence on brain function, T cells are not found within the brain parenchyma, a fact that only adds more mystery into these enigmatic interactions between T cells and the brain. Our results suggest that meningeal space, surrounding the brain, is the site where CNS-associated immune activity takes place. We have recently discovered a presence of meningeal lymphatic vessels that drain CNS molecules and immune cells to the deep cervical lymph nodes. This communication between the CNS and the peripheral immunity is playing a key role in neurophysiology and in several CNS disorders. Interestingly, meningeal lymphatics are impaired in aging and their dysfunction may be related to age-related cognitive decline as well as to Alzheimer’s pathology. In addition to providing new insights into age-related disorders, meningeal lymphatics may also serve as a novel therapeutic target for these diseases and are worth of in-depth mechanistic exploration.
Mechanical Homeostasis of the Actin Cytoskeleton
My lab studies the design principles of cytoskeletal materials the drive cellular morphogenesis, with a focus on contractile machinery in adherent cells. In addition to force generation, a key feature of these materials are distributed force sensors which allow for rapid assembly, adaptation, repair and disintegration. Here I will describe how optogenetic control of RhoA GTPase is a powerful and versatile force spectroscopy approach of cytoskeletal assemblies and its recent use to probe repair response in actomyosin stress fibers. I will also describe our recent identification of 18 proteins from the zyxin, paxillin, Tes and Enigma families with mechanosensitive LIM (Lin11, Isl- 1 & Mec-3) domains that bind exclusively to mechanically stressed actin filaments. Our results suggest that the evolutionary emergence of contractile F-actin machinery coincided with, or required, proteins that could report on the stresses present there to maintain homeostasis of actively stressed networks.
Circadian/Multidien Molecular Oscillations and Rhythmicity of Epilepsy
The occurrence of seizures at specific times of the day has been consistently observed for centuries in individuals with epilepsy. Electrophysiological recordings provide evidence that seizures have a higher probability of occurring at a given time during the night and day cycle in individuals with epilepsy – the seizure rush hour. Which mechanisms underly such circadian rhythmicity of seizures? Why don’t they occur every day at the same time? Which mechanisms may underly their occurrence outside the rush hour? I shall present a hypothesis: MORE - Molecular Oscillations and Rhythmicity of Epilepsy, a conceptual framework to study and understand the mechanisms underlying the circadian rhythmicity of seizures and their probabilistic nature. The core of the hypothesis is the existence of circa 24h oscillations of gene and protein expression throughout the body in different cells and organs. The orchestrated molecular oscillations control the rhythmicity of numerous body events, such as feeding and sleep. The concept developed here is that molecular oscillations may favor seizure genesis at preferred times, generating the condition for a seizure rush hour. However, the condition is not sufficient, as other factors are necessary for a seizure to occur. Studying these molecular oscillations may help us understand seizure genesis mechanisms and find new therapeutic targets and predictive biomarkers. The MORE hypothesis can be generalized to comorbidities and the slower multidien (week/month period) rhythmicity of seizures.
Revealing the neural basis of human memory with direct recordings of place and grid cells and traveling waves
The ability to remember spatial environments is critical for everyday life. In this talk, I will discuss my lab’s findings on how the human brain supports spatial memory and navigation based on our experiments with direct brain recordings from neurosurgical patients performing virtual-reality spatial memory tasks. I will show that humans have a network of neurons that represent where we are located and trying to go. This network includes some cell types that are similar to those seen in animals, such as place and grid cells, as well as others that have not been seen before in animals, such as anchor and spatial-target cells. I also will explore the role of network oscillations in human memory, where humans again show several distinctive patterns compared to animals. Whereas rodents generally show a hippocampal oscillation at ~8Hz, humans have two separate hippocampal oscillations, at low and high frequencies, which support memory and navigation, respectively. Finally, I will show that neural oscillations in humans are traveling waves, propagating across the cortex, to coordinate the timing of neuronal activity across regions, which is another property not seen in animals. A theme from this work is that in terms of navigation and memory the human brain has novel characteristics compared with animals, which helps explain our rich behavioural abilities and has implications for treating disease and neurological disorders.
Cellular/circuit dysfunction in a model of Dravet syndrome - a severe childhood epilepsy
Dravet syndrome is a severe childhood epilepsy due to heterozygous loss-of-function mutation of the gene SCN1A, which encodes the type 1 neuronal voltage gated sodium (Na+) channel alpha-subunit Nav1.1. Prior studies in mouse models of Dravet syndrome (Scn1a+/- mice) at early developmental time points indicate that, in cerebral cortex, Nav1.1 is predominantly expressed in GABAergic interneurons (INs) and, in particular, in parvalbumin-positive fast-spiking basket cells (PV-INs). This has led to a model of Dravet syndrome pathogenesis whereby Nav1.1 mutation leads to preferential IN dysfunction, decreased synaptic inhibition, hyperexcitability, and epilepsy. We found that, at later developmental time points, the intrinsic excitability of PV-INs has essentially normalized, via compensatory reorganization of axonal Na+ channels. Instead, we found persistent and seemingly paradoxical dysfunction of putative disinhibitory INs expressing vasoactive intestinal peptide (VIP-INs). In vivo two-photon calcium imaging in neocortex during temperature-induced seizures in Scn1a+/- mice showed that mean activity of both putative principal cells and PV-INs was higher in Scn1a+/- relative to wild-type controls during quiet wakefulness at baseline and at elevated core body temperature. However, wild-type PV-INs showed a progressive synchronization in response to temperature elevation that was absent in PV-INs from Scn1a+/- mice immediately prior to seizure onset. We suggest that impaired PV-IN synchronization, perhaps via persistent axonal dysfunction, may contribute to the transition to the ictal state during temperature induced seizures in Dravet syndrome.
CD8+ T cells induce interferon-responsive oligodendrocytes and microglia in white matter aging
FENS Forum 2024
CD8 T cells play a major role in CNS inflammation and brain atrophy in type I interferon-mediated neuroinflammation of RNaseT2-deficient mice
FENS Forum 2024
Differential sensitivity and molecular responses of malignant cells derived from neuronal and glial cells to ER and proteasome stress
FENS Forum 2024
Short-term CD8+ T cells ablation reduces microgliosis in the hippocampus of old APP/PS1 animals
FENS Forum 2024
Synergistic effect of melatonin and methylprednisolone on reducing disability in EAE by ameliorating induction, migration, and reactivation of T cells in the central nervous system
FENS Forum 2024
When your support cells aren't that supportive: Astrocytic alterations contribute to early impairments in the motor cortex plasticity of presymptomatic SOD1G93A mice
FENS Forum 2024