← Back

Temporal Coherence

Topic spotlight
TopicWorld Wide

temporal coherence

Discover seminars, jobs, and research tagged with temporal coherence across World Wide.
2 curated items2 Seminars
Updated about 4 years ago
2 items · temporal coherence
2 results
SeminarNeuroscienceRecording

How does seeing help listening? Audiovisual integration in Auditory Cortex

Jennifer Bizley
University College London
Dec 1, 2021

Multisensory responses are ubiquitous in so-called unisensory cortex. However, despite their prevalence, we have very little understanding of what – if anything - they contribute to perception. In this talk I will focus on audio-visual integration in auditory cortex. Anatomical tracing studies highlight visual cortex as one source of visual input to auditory cortex. Using cortical cooling we test the hypothesis that these inputs support audiovisual integration in ferret auditory cortex. Behavioural studies in humans support the idea that visual stimuli can help listeners to parse an auditory scene. This effect is paralleled in single units in auditory cortex, where responses to a sound mixture can be determined by the timing of a visual stimulus such that sounds that are temporally coherent with a visual stimulus are preferentially represented. Our recent data therefore support the idea that one role for the early integration of auditory and visual signals in auditory cortex is to support auditory scene analysis, and that visual cortex plays a key role in this process.

SeminarNeuroscience

Synchrony and Synaptic Signaling in Cerebellar Circuits

Indira Raman
Northwestern University
Apr 29, 2021

The cerebellum permits a wide range of behaviors that involve sensorimotor integration. We have been investigating how specific cellular and synaptic specializations of cerebellar neurons measured in vitro, give rise to circuit activity in vivo. We have investigated these issues by studying Purkinje neurons as well as the large neurons of the mouse cerebellar nuclei, which form the major excitatory premotor projection from the cerebellum. Large CbN cells have ion channels that favor spontaneous action potential firing and GABAA receptors that generate ultra-fast inhibitory synaptic currents, raising the possibility that these biophysical attributes may permit CbN cells to respond differently to the degree of temporal coherence of their Purkinje cell inputs. In vivo, self-initiated motor programs associated with whisking correlates with asynchronous changes in Purkinje cell simple spiking that are asynchronous across the population. The resulting inhibition converges with mossy fiber excitation to yield little change in CbN cell firing, such that cerebellar output is low or cancelled. In contrast, externally applied sensory stimuli elicits a transient, synchronous inhibition of Purkinje cell simple spiking. During the resulting strong disinhibition of CbN cells, sensory-induced excitation from mossy fibers effectively drives cerebellar outputs that increase the magnitude of reflexive whisking. Purkinje cell synchrony, therefore, may be a key variable contributing to the “positive effort” hypothesized by David Marr in 1969 to be necessary for cerebellar control of movement.