Timing Precision
timing precision
Error correction and reliability timescale in converging cortical networks
Rapidly changing inputs such as visual scenes and auditory landscapes are transmitted over several synaptic interfaces and perceived with little loss of detail, but individual neurons are typically “noisy” and cortico-cortical connections are typically “weak”. To understand how information embodied in spike train is transmitted in a lossless manner, we focus on a single synaptic interface: between pyramidal cells and putative interneurons. Using arbitrary white noise patterns injected intra-cortically as photocurrents to freely-moving mice, we find that directly-activated cells exhibit precision of several milliseconds, but post-synaptic, indirectly-activated cells exhibit higher precision. Considering multiple identical messages, the reliability of directly-activated cells peaks at a timescale of dozens of milliseconds, whereas indirectly-activated cells exhibit an order-of-magnitude faster timescale. Using data-driven modelling, we find that error correction is consistent with non-linear amplification of coincident spikes.
Variability, maintenance and learning in birdsong
The songbird zebra finch is an exemplary model system in which to study trial-and-error learning, as the bird learns its single song gradually through the production of many noisy renditions. It is also a good system in which to study the maintenance of motor skills, as the adult bird actively maintains its song and retains some residual plasticity. Motor learning occurs through the association of timing within the song, represented by sparse firing in nucleus HVC, with motor output, driven by nucleus RA. Here we show through modeling that the small level of observed variability in HVC can result in a network which is more easily able to adapt to change, and is most robust to cell damage or death, than an unperturbed network. In collaboration with Carlos Lois’ lab, we also consider the effect of directly perturbing HVC through viral injection of toxins that affect the firing of projection neurons. Following these perturbations, the song is profoundly affected but is able to almost perfectly recover. We characterize the changes in song acoustics and syntax, and propose models for HVC architecture and plasticity that can account for some of the observed effects. Finally, we suggest a potential role for inputs from nucleus Uva in helping to control timing precision in HVC.
An evolutionarily conserved hindwing circuit mediates Drosophila flight control
My research at the interface of neurobiology, biomechanics, and behavior seeks to understand how the timing precision of sensory input structures locomotor output. My lab studies the flight behavior of the fruit fly, Drosophila melanogaster, combining powerful genetic tools available for labeling and manipulating neural circuits with cutting-edge imaging in awake, behaving animals. This work has the potential to fundamentally reshape understanding of the evolution of insect flight, as well as highlight the tremendous importance of timing in the context of locomotion. Timing is crucial to the nervous system. The ability to rapidly detect and process subtle disturbances in the environment determines whether an animal can attain its next meal or successfully navigate complex, unpredictable terrain. While previous work on various animals has made tremendous strides uncovering the specialized neural circuits used to resolve timing differences with sub-microsecond resolution, it has focused on the detection of timing differences in sensory systems. Understanding of how the timing of motor output is structured by precise sensory input remains poor. My research focuses on an organ unique to fruit flies, called the haltere, that serves as a bridge for detecting and acting on subtle timing differences, helping flies execute rapid maneuvers. Understanding how this relatively simple insect canperform such impressive aerial feats demands an integrative approach that combines physics, muscle mechanics, neuroscience, and behavior. This unique, powerful approach will reveal the general principles that govern sensorimotor processing.