Tissue Formation
tissue formation
Clonal analysis at single cell level helps to understand neural crest development
Recent research on the neural crest has revealed the multipotency and plasticity of nerve-associated Schwann cell precursors, which can differentiate into diverse cell types, including parasympathetic neurons, neuroendocrine cells, and mesenchymal stem cells. These findings challenge the traditional view of peripheral nerves, highlighting their role as niches for migratory progenitor cells that contribute to tissue formation and regeneration.
Novel Tools for Spatial and Temporal Genomics
The precise spatial localization of molecular signals within tissues richly informs the mechanisms of tissue formation and function. Here, we’ll introduce Slide-seq, a technology which enables transcriptome-wide measurements with near-single cell spatial resolution. We’ll describe recent experimental and computational advances to enable Slide-seq in biological contexts in biological contexts where high detection sensitivity is important. More broadly, we’ll discuss the promise and challenges of spatial transcriptomics for tissue genomics. Lastly, we’ll touch upon novel molecular recording technologies, which allows recording of the absolute time dynamics of gene expression in live systems into DNA sequences.