← Back

Tonic Activation

Topic spotlight
TopicWorld Wide

tonic activation

Discover seminars, jobs, and research tagged with tonic activation across World Wide.
2 curated items2 Seminars
Updated about 4 years ago
2 items · tonic activation
2 results
SeminarNeuroscienceRecording

Context-Dependent Relationships between Locus Coeruleus Firing Patterns and Coordinated Neural Activity in the Anterior Cingulate Cortex

Siddhartha Joshi
Baylor College of Medicine
Oct 6, 2021

Ascending neuromodulatory projections from the locus coeruleus (LC) affect cortical neural networks via the release of norepinephrine (NE). However, the exact nature of these neuromodulatory effects on neural activity patterns in vivo is not well understood. Here we show that in awake monkeys, LC activation is associated with changes in coordinated activity patterns in the anterior cingulate cortex (ACC). These relationships, which are largely independent of changes in firing rates of individual ACC neurons, depend on the type of LC activation: ACC pairwise correlations tend to be reduced when tonic (baseline) LC activity increases but are enhanced when external events drive phasic LC responses. Both relationships covary with pupil changes that reflect LC activation and arousal. These results suggest that modulations of information processing that reflect changes in coordinated activity patterns in cortical networks can result partly from ongoing, context-dependent, arousal-related changes in activation of the LC-NE system.

SeminarNeuroscienceRecording

Playing fast and loose with glutamate builds healthy circuits in the developing cortex

Chris Dulla
Tufts University
Feb 16, 2021

The construction of cortical circuits requires the precise formation of connections between excitatory and inhibitory neurons during early development. Multiple factors, including neurotransmitters, neuronal activity, and neuronal-glial interactions, shape how these critical circuits form. Disruptions of these early processes can disrupt circuit formation, leading to epilepsy and other neurodevelopmental disorders. Here, I will describe our work into understanding how prolonged post-natal astrocyte development in the cortex creates a permissive window for glutamate signaling that provides tonic activation of developing interneurons through Grin2D NMDA receptors. Experimental disruption of this pathway results in hyperexcitable cortical circuits and human mutations in the Grin2D gene, as well as other related molecules that regulate early life glutamate signaling, are associated with devastating epileptic encephalopathies. We will explore fundamental mechanisms linking early life glutamate signaling and later circuit hyperexcitability, with an emphasis on potential therapeutic interventions aimed at reducing epilepsy and other neurological dysfunction.