Tractography
tractography
CNStalk: Anatomo-functional organisation of the grasping network in the primate brain
Cortical functions result from the conjoint activity of different, reciprocally connected areas working together as large-scale functionally specialized networks. In the macaque brain, neural tracers and functional data have provided evidence for functionally specialized large-scale cortical networks involving temporal, parietal, and frontal areas. One of these networks, the lateral grasping network, appears to play a primary role in controlling hand action organization and recognition. Available functional and tractograpy data suggest the existence of a human counterpart of this network.
A machine learning way to analyse white matter tractography streamlines / Application of artificial intelligence in correcting motion artifacts and reducing scan time in MRI
1. Embedding is all you need: A machine learning way to analyse white matter tractography streamlines - Dr Shenjun Zhong, Monash Biomedical Imaging Embedding white matter streamlines with various lengths into fixed-length latent vectors enables users to analyse them with general data mining techniques. However, finding a good embedding schema is still a challenging task as the existing methods based on spatial coordinates rely on manually engineered features, and/or labelled dataset. In this webinar, Dr Shenjun Zhong will discuss his novel deep learning model that identifies latent space and solves the problem of streamline clustering without needing labelled data. Dr Zhong is a Research Fellow and Informatics Officer at Monash Biomedical Imaging. His research interests are sequence modelling, reinforcement learning and federated learning in the general medical imaging domain. 2. Application of artificial intelligence in correcting motion artifacts and reducing scan time in MRI - Dr Kamlesh Pawar, Monash Biomedical imaging Magnetic Resonance Imaging (MRI) is a widely used imaging modality in clinics and research. Although MRI is useful it comes with an overhead of longer scan time compared to other medical imaging modalities. The longer scan times also make patients uncomfortable and even subtle movements during the scan may result in severe motion artifact in the images. In this seminar, Dr Kamlesh Pawar will discuss how artificial intelligence techniques can reduce scan time and correct motion artifacts. Dr Pawar is a Research Fellow at Monash Biomedical Imaging. His research interest includes deep learning, MR physics, MR image reconstruction and computer vision.
Machine learning methods applied to dMRI tractography for the study of brain connectivity
Tractography datasets, calculated from dMRI, represent the main WM structural connections in the brain. Thanks to advances in image acquisition and processing, the complexity and size of these datasets have constantly increased, also containing a large amount of artifacts. We present some examples of algorithms, most of them based on classical machine learning approaches, to analyze these data and identify common connectivity patterns among subjects.