← Back

Transcription

Topic spotlight
TopicWorld Wide

transcription

Discover seminars, jobs, and research tagged with transcription across World Wide.
69 curated items45 Seminars24 ePosters
Updated 2 months ago
69 items · transcription
69 results
SeminarNeuroscience

Astrocytes: From Metabolism to Cognition

Juan P. Bolanos
Professor of Biochemistry and Molecular Biology, University of Salamanca
Oct 2, 2025

Different brain cell types exhibit distinct metabolic signatures that link energy economy to cellular function. Astrocytes and neurons, for instance, diverge dramatically in their reliance on glycolysis versus oxidative phosphorylation, underscoring that metabolic fuel efficiency is not uniform across cell types. A key factor shaping this divergence is the structural organization of the mitochondrial respiratory chain into supercomplexes. Specifically, complexes I (CI) and III (CIII) form a CI–CIII supercomplex, but the degree of this assembly varies by cell type. In neurons, CI is predominantly integrated into supercomplexes, resulting in highly efficient mitochondrial respiration and minimal reactive oxygen species (ROS) generation. Conversely, in astrocytes, a larger fraction of CI remains unassembled, freely existing apart from CIII, leading to reduced respiratory efficiency and elevated mitochondrial ROS production. Despite this apparent inefficiency, astrocytes boast a highly adaptable metabolism capable of responding to diverse stressors. Their looser CI–CIII organization allows for flexible ROS signaling, which activates antioxidant programs via transcription factors like Nrf2. This modular architecture enables astrocytes not only to balance energy production but also to support neuronal health and influence complex organismal behaviors.

SeminarNeuroscience

Of glia and macrophages, signaling hubs in development and homeostasis

Angela Giangrande
IGBMC, CNRS UMR 7104 - Inserm U 1258, Illkirch, France
Feb 20, 2024

We are interested in the biology of macrophages, which represent the first line of defense against pathogens. In Drosophila, the embryonic hemocytes arise from the mesoderm whereas glial cells arise from multipotent precursors in the neurogenic region. These cell types represent, respectively, the macrophages located outside and within the nervous system (similar to vertebrate microglia). Thus, despite their different origin, hemocytes and glia display common functions. In addition, both cell types express the Glide/Gcm transcription factor, which plays an evolutionarily conserved role as an anti-inflammatory factor. Moreover, embryonic hemocytes play an evolutionarily conserved and fundamental role in development. The ability to migrate and to contact different tissues/organs most likely allow macrophages to function as signaling hubs. The function of macrophages beyond the recognition of the non-self calls for revisiting the biology of these heterogeneous and plastic cells in physiological and pathological conditions across evolution.

SeminarNeuroscienceRecording

Cellular and genetic mechanisms of cerebral cortex folding

Víctor Borrell
Instituto de Neurociencias, Alicante
Jan 16, 2024

One of the most prominent features of the human brain is the fabulous size of the cerebral cortex and its intricate folding, both of which emerge during development. Over the last few years, work from my lab has shown that specific cellular and genetic mechanisms play central roles in cortex folding, particularly linked to neural stem and progenitor cells. Key mechanisms include high rates of neurogenesis, high abundance of basal Radial Glia Cells (bRGCs), and neuron migration, all of which are intertwined during development. We have also shown that primary cortical folds follow highly stereotyped patterns, defined by a spatial-temporal protomap of gene expression within germinal layers of the developing cortex. I will present recent findings from my laboratory revealing novel cellular and genetic mechanisms that regulate cortex expansion and folding. We have uncovered the contribution of epigenetic regulation to the establishment of the cortex folding protomap, modulating the expression levels of key transcription factors that control progenitor cell proliferation and cortex folding. At the single cell level, we have identified an unprecedented diversity of cortical progenitor cell classes in the ferret and human embryonic cortex. These are differentially enriched in gyrus versus sulcus regions and establish parallel cell lineages, not observed in mouse. Our findings show that genetic and epigenetic mechanisms in gyrencephalic species diversify cortical progenitor cell types and implement parallel cell linages, driving the expansion of neurogenesis and patterning cerebral cortex folds.

SeminarNeuroscience

Astrocyte reprogramming / activation and brain homeostasis

Thomaidou Dimitra
Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
Dec 12, 2023

Astrocytes are multifunctional glial cells, implicated in neurogenesis and synaptogenesis, supporting and fine-tuning neuronal activity and maintaining brain homeostasis by controlling blood-brain barrier permeability. During the last years a number of studies have shown that astrocytes can also be converted into neurons if they force-express neurogenic transcription factors or miRNAs. Direct astrocytic reprogramming to induced-neurons (iNs) is a powerful approach for manipulating cell fate, as it takes advantage of the intrinsic neural stem cell (NSC) potential of brain resident reactive astrocytes. To this end, astrocytic cell fate conversion to iNs has been well-established in vitro and in vivo using combinations of transcription factors (TFs) or chemical cocktails. Challenging the expression of lineage-specific TFs is accompanied by changes in the expression of miRNAs, that post-transcriptionally modulate high numbers of neurogenesis-promoting factors and have therefore been introduced, supplementary or alternatively to TFs, to instruct direct neuronal reprogramming. The neurogenic miRNA miR-124 has been employed in direct reprogramming protocols supplementary to neurogenic TFs and other miRNAs to enhance direct neurogenic conversion by suppressing multiple non-neuronal targets. In our group we aimed to investigate whether miR-124 is sufficient to drive direct reprogramming of astrocytes to induced-neurons (iNs) on its own both in vitro and in vivo and elucidate its independent mechanism of reprogramming action. Our in vitro data indicate that miR-124 is a potent driver of the reprogramming switch of astrocytes towards an immature neuronal fate. Elucidation of the molecular pathways being triggered by miR-124 by RNA-seq analysis revealed that miR-124 is sufficient to instruct reprogramming of cortical astrocytes to immature induced-neurons (iNs) in vitro by down-regulating genes with important regulatory roles in astrocytic function. Among these, the RNA binding protein Zfp36l1, implicated in ARE-mediated mRNA decay, was found to be a direct target of miR-124, that be its turn targets neuronal-specific proteins participating in cortical development, which get de-repressed in miR-124-iNs. Furthermore, miR-124 is potent to guide direct neuronal reprogramming of reactive astrocytes to iNs of cortical identity following cortical trauma, a novel finding confirming its robust reprogramming action within the cortical microenvironment under neuroinflammatory conditions. In parallel to their reprogramming properties, astrocytes also participate in the maintenance of blood-brain barrier integrity, which ensures the physiological functioning of the central nervous system and gets affected contributing to the pathology of several neurodegenerative diseases. To study in real time the dynamic physical interactions of astrocytes with brain vasculature under homeostatic and pathological conditions, we performed 2-photon brain intravital imaging in a mouse model of systemic neuroinflammation, known to trigger astrogliosis and microgliosis and to evoke changes in astrocytic contact with brain vasculature. Our in vivo findings indicate that following neuroinflammation the endfeet of activated perivascular astrocytes lose their close proximity and physiological cross-talk with vasculature, however this event is at compensated by the cross-talk of astrocytes with activated microglia, safeguarding blood vessel coverage and maintenance of blood-brain integrity.

SeminarNeuroscience

Epigenetic rewiring in Schinzel-Giedion syndrome

Alessandro Sessa, PhD
San Raffaele Scientific Institute, Milan (Italy), Stem Cell & Neurogenesis Unit
May 2, 2023

During life, a variety of specialized cells arise to grant the right and timely corrected functions of tissues and organs. Regulation of chromatin in defining specialized genomic regions (e.g. enhancers) plays a key role in developmental transitions from progenitors into cell lineages. These enhancers, properly topologically positioned in 3D space, ultimately guide the transcriptional programs. It is becoming clear that several pathologies converge in differential enhancer usage with respect to physiological situations. However, why some regulatory regions are physiologically preferred, while some others can emerge in certain conditions, including other fate decisions or diseases, remains obscure. Schinzel-Giedion syndrome (SGS) is a rare disease with symptoms such as severe developmental delay, congenital malformations, progressive brain atrophy, intractable seizures, and infantile death. SGS is caused by mutations in the SETBP1 gene that results in its accumulation further leading to the downstream accumulation of SET. The oncoprotein SET has been found as part of the histone chaperone complex INHAT that blocks the activity of histone acetyltransferases suggesting that SGS may (i) represent a natural model of alternative chromatin regulation and (ii) offer chances to study downstream (mal)adaptive mechanisms. I will present our work on the characterization of SGS in appropriate experimental models including iPSC-derived cultures and mouse.

SeminarNeuroscience

Epigenomic (re)programming of the brain and behavior by ovarian hormones

Marija Kundakovic
Fordham University
May 1, 2023

Rhythmic changes in sex hormone levels across the ovarian cycle exert powerful effects on the brain and behavior, and confer female-specific risks for neuropsychiatric conditions. In this talk, Dr. Kundakovic will discuss the role of fluctuating ovarian hormones as a critical biological factor contributing to the increased depression and anxiety risk in women. Cycling ovarian hormones drive brain and behavioral plasticity in both humans and rodents, and the talk will focus on animal studies in Dr. Kundakovic’s lab that are revealing the molecular and receptor mechanisms that underlie this female-specific brain dynamic. She will highlight the lab’s discovery of sex hormone-driven epigenetic mechanisms, namely chromatin accessibility and 3D genome changes, that dynamically regulate neuronal gene expression and brain plasticity but may also prime the (epi)genome for psychopathology. She will then describe functional studies, including hormone replacement experiments and the overexpression of an estrous cycle stage-dependent transcription factor, which provide the causal link(s) between hormone-driven chromatin dynamics and sex-specific anxiety behavior. Dr. Kundakovic will also highlight an unconventional role that chromatin dynamics may have in regulating neuronal function across the ovarian cycle, including in sex hormone-driven X chromosome plasticity and hormonally-induced epigenetic priming. In summary, these studies provide a molecular framework to understand ovarian hormone-driven brain plasticity and increased female risk for anxiety and depression, opening new avenues for sex- and gender-informed treatments for brain disorders.

SeminarNeuroscience

Identifying central mechanisms of glucocorticoid circadian rhythm dysfunction in breast cancer

Jeremy C. Borniger
Cold Spring Harbor Laboratory
Oct 17, 2022

The circadian release of endogenous glucocorticoids is essential in preparing and synchronizing the body’s daily physiological needs. Disruption in the rhythmic activity of glucocorticoids has been observed in individuals with a variety of cancer types, and blunting of this rhythm has been shown to predict cancer mortality and declines in quality of life. This suggests that a disrupted glucocorticoid rhythm is potentially a shared phenotype across cancers. However, where this phenomenon is driven by the cancer itself, and the causal mechanisms that link glucocorticoid rhythm dysfunction and cancer outcomes remain preliminary at best. The regulation of daily glucocorticoid activity has been well-characterized and is maintained, in part, by the coordinated response of the hypothalamic-pituitary-adrenal (HPA) axis, consisting of the suprachiasmatic nucleus (SCN) and corticotropin-releasing hormone-expressing neurons of the paraventricular nucleus of the hypothalamus (PVNCRH). Consequently, we set out to examine if cancer-induced glucocorticoid dysfunction is regulated by disruptions within these hypothalamic nuclei. In comparison to their tumor-free baseline, mammary tumor-bearing mice exhibited a blunting of glucocorticoid rhythms across multiple timepoints throughout the day, as measured by the overall levels and the slope of fecal corticosterone rhythms, during tumor progression. We further examined how peripheral tumors shape hypothalamic activity within the brain. Serial two-photon tomography for whole-brain cFos imaging suggests a disrupted activation of the PVN in mice with tumors. Additionally, we found GFP labeled CRH+ neurons within the PVN after injection of pseudorabies virus expressing GFP into the tumor, pointing to the PVN as a primary target disrupted by mammary tumors. Preliminary in vivo fiber photometry data show that PVNCRH neurons exhibit enhanced calcium activity during tumor progression, as compared to baseline (no tumor) activity. Taken together, this suggests that there may be an overactive HPA response during tumor progression, which in turn, may result in a subsequent negative feedback on glucocorticoid rhythms. Current studies are examining whether tumor progression modulates SCN calcium activity, how the transcriptional profile of PVNCRH neurons is changed, and test if manipulation of the neurocircuitry surrounding glucocorticoid rhythmicity alters tumor characteristics.

SeminarNeuroscience

What shapes the transcriptional identity of a neuron?

Fenna Krienen
Princeton
Oct 6, 2022

Within the vertebrate neocortex and other telencephalic structures, molecularly-defined neurons tend to segregate at first order into GABAergic types and glutamatergic types. Two fundamental questions arise: (1) do non-telencephalic neurons similarly segregate by neurotransmitter status, and (2) do GABAergic (or glutamatergic) types sampled in different structures share many molecular features in common, beyond the few genes directly responsible for neurotransmitter synthesis and release? To address these questions, we used single-nucleus RNA sequencing, analyzing over 2.4 million brain cells sampled from 16 locations in a primate (the common marmoset). Unexpectedly, we find the answer to both is “no”. I will discuss implications for generalizing associations between neurotransmitter utilization and other phenotypes, and share ongoing efforts to map the biodistributions of cell types in the primate brain.

SeminarNeuroscience

Untitled Seminar

Giordano Lippi (USA), Maria Carreño-Muñoz (Canada), Rhys Knowles (Australia), Nigel Kee (Sweden)
Sep 27, 2022

Giordano Lippi – Beyond transcription – microRNA mechanisms of brain development; Maria Isabel Carreño-Muñoz– Role of GABAergic circuits in the generation of sensory processing dysregulations in SYNGAP1 haploinsufficiency; Rhys Knowles-TBA; Nigel Kee- That other half: Derivation of posterior axial tissues from human stem cells

SeminarNeuroscience

Don't forget the gametes: Neurodevelopmental pathogenesis starts in the sperm and egg

Jill Escher
Jill Escher is founder of the Escher Fund for Autism, which funds research on non-genetic inheritance, as well as autism-related programs. She is a member of the governing council of the Environmental Mutagenesis and Genomics Society, where she is past chair of the Germ Cell and Heritable Effects special interest group. She also serves as president of the National Council on Severe Autism and past president of Autism Society San Francisco Bay Area. A former lawyer, she and her husband are the pa
Jul 5, 2022

Proper development of the nervous system depends not only on the inherited DNA sequence, but also on proper regulation of gene expression, as controlled in part by epigenetic mechanisms present in the parental gametes. In this presentation an internationally recognized research advocate explains why researchers concerned about the origins of increasingly prevalent neurodevelopmental disorders such as autism and attention deficit hyperactivity disorder should look beyond genetics in probing the origins of dysregulated transcription of brain-related genes. The culprit for a subset of cases, she contends, may lie in the exposure history of the parents, and thus their germ cells. To illustrate how environmentally informed, nongenetic dysfunction may occur, she focuses on the example of parents' histories of exposure to common agents of modern inhalational anesthesia, a highly toxic exposure that in mammalian models has been seen to induce heritable neurodevelopmental abnormality in offspring born of exposed germline.

SeminarNeuroscienceRecording

Transcriptional controls over projection neuron fate diversity

Esther Klingler
Jabaudon lab, University of Geneva
Jun 28, 2022

The cerebral cortex is the most evolved structure of the brain and the site for higher cognitive functions. It consists of 6 layers, each composed of specific types of neurons. Interconnectivity between cortical areas is critical for sensory integration and sensorimotor transformation. Inter-areal cortical projection neurons are located in all cortical layers and form a heterogeneous population, which send their axon across cortical areas, both within and across hemispheres. How this diversity emerges during development remains largely unknown. Here, we address this question by linking the connectome and transcriptome of developing cortical projection neurons and show distinct maturation paces in neurons with distinct projections, which correlates with the sequential development of sensory and motor functions during postnatal period.

SeminarNeuroscience

Cell-type specific genomics and transcriptomics of HIV in the brain

Amara Plaza-Jennings
Icahn School of Medicine at Mt. Sinai, NYC
Jun 21, 2022

Exploration of genome organization and function in the HIV infected brain is critical to aid in the understanding and development of treatments for HIV-associated neurocognitive disorder (HAND). Here, we applied a multiomic approach, including single nuclei transcriptomics, cell-type specific Hi-C 3D genome mapping, and viral integration site sequencing (IS-seq) to frontal lobe tissue from HIV-infected individuals with encephalitis (HIVE) and without encephalitis (HIV+). We observed reorganization of open/repressive (A/B) compartment structures in HIVE microglia encompassing 6.4% of the genome with enrichment for regions containing interferon (IFN) pathway genes. 3D genome remodeling was associated with transcriptomic reprogramming, including down-regulation of cell adhesion and synapse-related functions and robust activation of IFN signaling and cell migratory pathways, and was recapitulated by IFN-g stimulation of cultured microglial cells. Microglia from HIV+ brains showed, to a lesser extent, similar transcriptional alterations. IS-seq recovered 1,221 integration sites in the brain that were enriched for chromosomal domains newly mobilized into a permissive chromatin environment in HIVE microglia. Viral transcription, which was detected in 0.003% of all nuclei in HIVE brain, occurred in a subset of highly activated microglia that drove differential expression in HIVE. Thus, we observed a dynamic interrelationship of interferon-associated 3D genome and transcriptome remodeling with HIV integration and transcription in the brain.

SeminarNeuroscience

Systemic regulation and measurement of mammalian aging

Tony Wyss-Coray
Stanford University
May 30, 2022

Brain aging leads to cognitive decline and is the main risk factor for sporadic forms of neurodegenerative diseases including Alzheimer’s disease. While brain cell- and tissue-intrinsic factors are likely key determinants of the aging process recent studies document a remarkable susceptibility of the brain to circulatory factors. Thus, blood borne factors from young mice or humans are sufficient to slow aspects of brain aging and improve cognitive function in old mice and, vice versa, factors from old mice are detrimental for young mice and impair cognition. We found evidence that the cerebrovasculature is an important target of circulatory factors and that brain endothelial cells show prominent age-related transcriptional changes in response to plasma. Furthermore, plasma proteins are taken up broadly into the young brain through receptor mediated transport which declines with aging. At the same time, brain derived proteins are detectable in plasma allowing us to measure physiological changes linked to brain aging in plasma. We are exploring the relevance of these findings for neurodegeneration and potential applications towards therapies.

SeminarNeuroscienceRecording

Transcriptional adaptation couples past experience and future sensory responses

Tatsuya Tsukahara
Datta lab, Harvard Medical School
Apr 26, 2022

Animals traversing different environments encounter both stable background stimuli and novel cues, which are generally thought to be detected by primary sensory neurons and then distinguished by downstream brain circuits. Sensory adaptation is a neural mechanism that filters background by minimizing responses to stable sensory stimuli, and a fundamental feature of sensory systems. Adaptation over relatively fast timescales (milliseconds to minutes) have been reported in many sensory systems. However, adaptation to persistent environmental stimuli over longer timescales (hours to days) have been largely unexplored, even though those timescales are ethologically important since animals typically stay in one environment for hours. I showed that each of the ~1,000 olfactory sensory neuron (OSN) subtypes in the mouse harbors a distinct transcriptome whose content is precisely determined by interactions between its odorant receptor and the environment. This transcriptional variation is systematically organized to support sensory adaptation: expression levels of many genes relevant to transforming odors into spikes continuously vary across OSN subtypes, dynamically adjust to new environments over hours, and accurately predict acute OSN-specific odor responses. The sensory periphery therefore separates salient signals from predictable background via a transcriptional mechanism whose moment-to-moment state reflects the past and constrains the future; these findings suggest a general model in which structured transcriptional variation within a cell type reflects individual experience.

SeminarNeuroscience

Mapping the Dynamics of the Linear and 3D Genome of Single Cells in the Developing Brain

Longzhi Tan
Stanford
Mar 29, 2022

Three intimately related dimensions of the mammalian genome—linear DNA sequence, gene transcription, and 3D genome architecture—are crucial for the development of nervous systems. Changes in the linear genome (e.g., de novo mutations), transcriptome, and 3D genome structure lead to debilitating neurodevelopmental disorders, such as autism and schizophrenia. However, current technologies and data are severely limited: (1) 3D genome structures of single brain cells have not been solved; (2) little is known about the dynamics of single-cell transcriptome and 3D genome after birth; (3) true de novo mutations are extremely difficult to distinguish from false positives (DNA damage and/or amplification errors). Here, I filled in this longstanding technological and knowledge gap. I recently developed a high-resolution method—diploid chromatin conformation capture (Dip-C)—which resolved the first 3D structure of the human genome, tackling a longstanding problem dating back to the 1880s. Using Dip-C, I obtained the first 3D genome structure of a single brain cell, and created the first transcriptome and 3D genome atlas of the mouse brain during postnatal development. I found that in adults, 3D genome “structure types” delineate all major cell types, with high correlation between chromatin A/B compartments and gene expression. During development, both transcriptome and 3D genome are extensively transformed in the first month of life. In neurons, 3D genome is rewired across scales, correlated with gene expression modules, and independent of sensory experience. Finally, I examined allele-specific structure of imprinted genes, revealing local and chromosome-wide differences. More recently, I expanded my 3D genome atlas to the human and mouse cerebellum—the most consistently affected brain region in autism. I uncovered unique 3D genome rewiring throughout life, providing a structural basis for the cerebellum’s unique mode of development and aging. In addition, to accurately measure de novo mutations in a single cell, I developed a new method—multiplex end-tagging amplification of complementary strands (META-CS), which eliminates nearly all false positives by virtue of DNA complementarity. Using META-CS, I determined the true mutation spectrum of single human brain cells, free from chemical artifacts. Together, my findings uncovered an unknown dimension of neurodevelopment, and open up opportunities for new treatments for autism and other developmental disorders.

SeminarNeuroscience

Experience-Dependent Transcription: From Genomic Mechanisms to Neural Circuit Function

Michael Greenberg, Richard Tsien, Brenda Bloodgood, Jennifer Phillips-Cremins, Johannes Graeff
Mar 8, 2022

Experience-dependent transcription is a key molecular mechanisms for regulating the development and plasticity of synapses and neural circuits and is thought to underlie cognitive functions such as perception, learning and memory. After two years of COVID-pandemic, the goal of this online conference is to allow investigators in the field to reconnect and to discuss their recent scientific findings.

SeminarNeuroscience

JAK/STAT regulation of the transcriptomic response during epileptogenesis

Amy Brooks-Kayal
Children's Hospital Colorado / UC Davis
Dec 14, 2021

Temporal lobe epilepsy (TLE) is a progressive disorder mediated by pathological changes in molecular cascades and neural circuit remodeling in the hippocampus resulting in increased susceptibility to spontaneous seizures and cognitive dysfunction. Targeting these cascades could prevent or reverse symptom progression and has the potential to provide viable disease-modifying treatments that could reduce the portion of TLE patients (>30%) not responsive to current medical therapies. Changes in GABA(A) receptor subunit expression have been implicated in the pathogenesis of TLE, and the Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathway has been shown to be a key regulator of these changes. The JAK/STAT pathway is known to be involved in inflammation and immunity, and to be critical for neuronal functions such as synaptic plasticity and synaptogenesis. Our laboratories have shown that a STAT3 inhibitor, WP1066, could greatly reduce the number of spontaneous recurrent seizures (SRS) in an animal model of pilocarpine-induced status epilepticus (SE). This suggests promise for JAK/STAT inhibitors as disease-modifying therapies, however, the potential adverse effects of systemic or global CNS pathway inhibition limits their use. Development of more targeted therapeutics will require a detailed understanding of JAK/STAT-induced epileptogenic responses in different cell types. To this end, we have developed a new transgenic line where dimer-dependent STAT3 signaling is functionally knocked out (fKO) by tamoxifen-induced Cre expression specifically in forebrain excitatory neurons (eNs) via the Calcium/Calmodulin Dependent Protein Kinase II alpha (CamK2a) promoter. Most recently, we have demonstrated that STAT3 KO in excitatory neurons (eNSTAT3fKO) markedly reduces the progression of epilepsy (SRS frequency) in the intrahippocampal kainate (IHKA) TLE model and protects mice from kainic acid (KA)-induced memory deficits as assessed by Contextual Fear Conditioning. Using data from bulk hippocampal tissue RNA-sequencing, we further discovered a transcriptomic signature for the IHKA model that contains a substantial number of genes, particularly in synaptic plasticity and inflammatory gene networks, that are down-regulated after KA-induced SE in wild-type but not eNSTAT3fKO mice. Finally, we will review data from other models of brain injury that lead to epilepsy, such as TBI, that implicate activation of the JAK/STAT pathway that may contribute to epilepsy development.

SeminarNeuroscience

Stem cell approaches to understand acquired and genetic epilepsies

Jenny Hsieh
University of Texas at San Antonio
Nov 16, 2021

The Hsieh lab focuses on the mechanisms that promote neural stem cell self-renewal and differentiation in embryonic and adult brain. Using mouse models, video-EEG monitoring, viral techniques, and imaging/electrophysiological approaches, we elucidated many of the key transcriptional/epigenetic regulators of adult neurogenesis and showed aberrant new neuron integration in adult rodent hippocampus contribute to circuit disruption and seizure development. Building on this work, I will present our recent studies describing how GABA-mediated Ca2+ activity regulates the production of aberrant adult-born granule cells. In a new direction of my laboratory, we are using human induced pluripotent stem cells and brain organoid models as approaches to understand brain development and disease. Mutations in one gene, Aristaless-related homeobox (ARX), are of considerable interest since they are known to cause a common spectrum of neurodevelopmental disorders including epilepsy, autism, and intellectual disability. We have generated cortical and subpallial organoids from patients with poly-alanine expansion mutations in ARX. To understand the nature of ARX mutations in the organoid system, we are currently performing cellular, molecular, and physiological analyses. I will present these data to gain a comprehensive picture of the effect of ARX mutations in brain development. Since we do not understand how human brain development is affected by ARX mutations that contribute to epilepsy, we believe these studies will allow us to understand the mechanism of pathogenesis of ARX mutations, which has the potential to impact the diagnosis and care of patients.

SeminarNeuroscience

Untitled Seminar

Laura Fenlon (Australia), Laurent Nguyen (Belgium), Carol Ann Mason (USA), Thomas Perlmann (Sweden)
Oct 26, 2021

Laura Fenlon (Australia): Time shapes all brains: timing of a conserved transcriptional network underlies divergent cortical connectivity routes in mammalian brain development and evolution; Laurent Nguyen (Belgium): Regulation of cerebral cortex morphogenesis by migrating cells; Carol Ann Mason (USA): Wiring the eye to brain for binocular vision: lessons from the albino visual system. Thomas Perlmann (Sweden): Interrogating dopamine neuron development at the single cell level

SeminarNeuroscienceRecording

Transcriptional and Epigenetic Mechanisms of Addiction

Eric Nestler
Mount Sinai
Oct 6, 2021
SeminarNeuroscience

Untitled Seminar

Isabelle Brunet (France), Debby Silver (USA), Robin Vigouroux (France), Patricia Garcez (Brazil)
Sep 29, 2021

Isabelle Brunet (France) – Neurovascular development Debby Silver (USA) - Dynamic post-transcriptional control of cortical development Robin Vigouroux (France) – Evolution of binocular vision Patricia Garcez (Brazil) – Beyond microcephaly: how Zika virus impacts brain development

SeminarPhysics of LifeRecording

How polymer-loop-extruding motors shape chromosomes

Ed Banigan
MIT
Sep 12, 2021

Chromosomes are extremely long, active polymers that are spatially organized across multiple scales to promote cellular functions, such as gene transcription and genetic inheritance. During each cell cycle, chromosomes are dramatically compacted as cells divide and dynamically reorganized into less compact, spatiotemporally patterned structures after cell division. These activities are facilitated by DNA/chromatin-binding protein motors called SMC complexes. Each of these motors can perform a unique activity known as “loop extrusion,” in which the motor binds the DNA/chromatin polymer, reels in the polymer fiber, and extrudes it as a loop. Using simulations and theory, I show how loop-extruding motors can collectively compact and spatially organize chromosomes in different scenarios. First, I show that loop-extruding complexes can generate sufficient compaction for cell division, provided that loop-extrusion satisfies stringent physical requirements. Second, while loop-extrusion alone does not uniquely spatially pattern the genome, interactions between SMC complexes and protein “boundary elements” can generate patterns that emerge in the genome after cell division. Intriguingly, these “boundary elements” are not necessarily stationary, which can generate a variety of patterns in the neighborhood of transcriptionally active genes. These predictions, along with supporting experiments, show how SMC complexes and other molecular machinery, such as RNA polymerase, can spatially organize the genome. More generally, this work demonstrates both the versatility of the loop extrusion mechanism for chromosome functional organization and how seemingly subtle microscopic effects can emerge in the spatiotemporal structure of nonequilibrium polymers.

SeminarNeuroscience

Integration of „environmental“ information in the neuronal epigenome

Geraldine Zimmer-Bensch
Functional Epigenetics in the Animal Model, Institute of Biology II, RWTH Aachen, Aachen, Germany
Aug 24, 2021

The inhibitory actions of the heterogeneous collection of GABAergic interneurons tremendously influence cortical information processing, which is reflected by diseases like autism, epilepsy and schizophrenia that involve defects in cortical inhibition. Apart from the regulation of physiological processes like synaptic transmission, proper interneuron function also relies on their correct development. Hence, decrypting regulatory networks that direct proper cortical interneuron development as well as adult functionality is of great interest, as this helps to identify critical events implicated in the etiology of the aforementioned diseases. Thereby, extrinsic factors modulate these processes and act on cell- and stage-specific transcriptional programs. Herein, epigenetic mechanisms of gene regulation, like DNA methylation executed by DNA methyltransferases (DNMTs), histone modifications and non-coding RNAs, call increasing attention in integrating “environmental information” in our genome and sculpting physiological processes in the brain relevant for human mental health. Several studies associate altered expression levels and function of the DNA methyltransferase 1 (DNMT1) in subsets of embryonic and adult cortical interneurons in patients diagnosed with schizophrenia. Although accumulating evidence supports the relevance of epigenetic signatures for instructing cell type-specific development, only very little is known about their functional implications in discrete developmental processes and in subtype-specific maturation of cortical interneurons. Similarly, little is known about the role of DNMT1 in regulating adult interneurons functionality. This talk will provide an overview about newly identified and roles DNMT1 has in orchestrating cortical interneuron development and adult function. Further, this talk will report about the implications of lncRNAs in mediating site-specific DNA methylation in response to discrete external stimuli.

SeminarNeuroscience

The unexpected precision of an activity-dependent transcription factor

Brenda Bloodgood
Division of Biological Sciences, Department of Neurobiology, University of California, San Diego, USA
May 18, 2021
SeminarPhysics of Life

Transcription factor dynamics and nuclear organization during early embryonic development

Mustafa Mir
University of Pennsylvania
Apr 22, 2021
SeminarNeuroscience

Nr4a1-mediated morphological adaptations in Ventral Pallidal projections to Mediodorsal Thalamus support cocaine intake and relapse-like behaviors

Michel Engeln
Institute of Neurodegenerative Diseases, University of Bordeaux, Bordeaux, France
Mar 18, 2021

Growing evidence suggests the ventral pallidum (VP) is critical for drug intake and seeking behaviors. Receiving dense projections from the nucleus accumbens as well as dopamine inputs from the midbrain, the VP plays a central role in the control of motivated behaviors. Repeated exposure to cocaine is known to alter VP neuronal firing and neurotransmission. Surprisingly, there is limited information on the molecular adaptations occurring in VP neurons following cocaine intake.To provide insights into cocaine-induced transcriptional alterations we performed RNA-sequencing on VP of mice following cocaine self-administration. Gene Ontology analysis pointed toward alterations in dendrite- and spinerelated genes. Subsequent transcriptional regulator analysis identified the transcription factor Nr4a1 as a common regulator for these sets of morphology-related genes.Consistent with the central role of the VP in reward, its neurons project to several key regions associated with cocaine-mediated behaviors. We thus assessed Nr4a1 expression levels in various projection populations.Following cocaine self-administration, VP neurons projecting to the mediodorsal thalamus (MDT) showed significantly increased Nr4a1 levels. To further investigate the role of Nr4a1 in cocaine intake and relapse, we bidirectionally manipulated its expression levels selectively in VP neurons projecting to the MDT. Increasing Nr4a1 levels resulted in enhanced relapse-like behaviors accompanied by a blockage of cocaine-induced spinogenesis.However, decreasing Nr4a1expression levels completely abolished cocaine intake and consequential relapse-like behaviors. Together, our preliminary findings suggest that drug-induced neuronal remodeling in pallido-thalamic circuits is critical for cocaine intake and relapse-like behaviors.

SeminarNeuroscience

Translational upregulation of STXBP1 by non-coding RNAs as an innovative treatment for STXBP1 encephalopathy

Federico Zara & Ganna Balagura
Institute G. Gaslini, University of Genoa
Mar 16, 2021

Developmental and epileptic encephalopathies (DEEs) are a broad spectrum of genetic epilepsies associated with impaired neurological development as a direct consequence of a genetic mutation, in addition to the effect of the frequent epileptic activity on brain. Compelling genetic studies indicate that heterozygous de novo mutations represent the most common underlying genetic mechanism, in accordance with the sporadic presentation of DEE. De novo mutations may exert a loss-of-function (LOF) on the protein by decrementing expression level and/or activity, leading to functional haploinsufficiency. These diseases share several features: severe and frequent refractory seizures, diffusely abnormal background activity on EEG, intellectual disability often profound, and severe consequences on global development. One of major causes of early onset DEE are de novo heterozygous mutations in syntaxin-binding-protein-1 gene STXBP1, which encodes a membrane trafficking protein playing critical role in vesicular docking and fusion. LOF STXBP1 mutations lead to a failure of neurotransmitter secretion from synaptic vesicles. Core clinical features of STXBP1 encephalopathy include early-onset epilepsy with hypsarrhythmic EEG, or burst-suppression pattern, or multifocal epileptiform activity. Seizures are often resistant to standard treatments and patients typically show intellectual disability, mostly severe to profound. Additional neurologic features may include autistic traits, movement disorders (dyskinesia, dystonia, tremor), axial hypotonia, and ataxia, indicating a broader neurologic impairment. Patients with severe neuro-cognitive features but without epilepsy have been reported. Recently, a new class of natural and synthetic non-coding RNAs have been identified, enabling upregulation of protein translation in a gene-specific way (SINEUPs), without any increase in mRNA of the target gene. SINEUPs are translational activators composed by a Binding Domain (BD) that overlaps, in antisense orientation, to the sense protein-coding mRNA, and determines target selection; and an Effector Domain (ED), that is essential for protein synthesis up regulation. SINEUPs have been shown to restore the physiological expression of a protein in case of haploinsufficiency, without driving excessive overexpression out of the physiological range. This technology brings many advantages, as it mainly acts on endogenous target mRNAs produced in situ by the wild-type allele; this action is limited to mRNA under physiological regulation, therefore no off-site effects can be expected in cells and tissues that do not express the target transcript; by acting only on a posttranscriptional level, SINEUPs do not trigger hereditable genome editing. After bioinformatic analysis of the promoter region of interest, we designed SINEUPs with 3 different BD for STXBP1. Human neurons from iPSCs were treated and STXBP1 levels showed a 1.5-fold increase compared to the Negative control. RNA levels of STXBP1 after the administration of SINEUPs remained stable as expected. These preliminary results proved the SINEUPs potential to specifically increase the protein levels without impacting on the genome. This is an extremely flexible approach to target many developmental and epileptic encephalopathies caused by haploinsufficiency, and therefore to address these diseases in a more tailored and radical way.

SeminarNeuroscience

Sex-Specific Brain Transcriptional Signatures in Human MDD and their Correlates in Mouse Models of Depression

Benoit Labonté
Université Laval & Centre de Recherche CERVO, Québec, Canada
Feb 11, 2021

Major depressive disorder (MDD) is a sexually dimorphic disease. This sexual dimorphism is believed to result from sex-specific molecular alterations affecting functional pathways regulating the capacity of men and women to cope with daily life stress differently. Transcriptional changes associated with epigenetic alterations have been observed in the brain of men and women with depression and similar changes have been reported in different animal models of stress-induced depressive-like behaviors. In fact, most of our knowledge of the biological basis of MDD is derived from studies of chronic stress models in rodents. However, while these models capture certain aspects of the features of MDD, the extent to which they reproduce the molecular pathology of the human syndrome remains unknown and the functional consequences of these changes on the neuronal networks controlling stress responses are poorly understood. During this presentation, we will first address the extent by which transcriptional signatures associated with MDD compares in men and women. We will then transition to the capacity of different mouse models of chronic stress to recapitulate some of the transcriptional alterations associated with the expression of MDD in both sexes. Finally, we will briefly elaborate on the functional consequences of these changes at the neuronal level and conclude with an integrative perspective on the contribution of sex-specific transcriptional profiles on the expression of stress responses and MDD in men and women.

SeminarNeuroscienceRecording

Circuit transcription factors in C.elegans

Oliver Hobert
Columbia University
Jan 13, 2021
SeminarNeuroscience

Cell-type specific transcriptional networks related to autism

Genevieve Konopka
Nov 9, 2020
SeminarPhysics of Life

Chromosomes, condensates and transcriptional control

Stephanie Weber, Olga Dudko, Gašper Tkačik
CUNY/ITS, CUNY/Princeton Center for Physics of Biological Function
Nov 5, 2020
SeminarNeuroscienceRecording

Microenvironment role in axonal regeneration- looking beyond the neurons

Oshri Avraham
Wash U
Oct 27, 2020

After an injury in the adult mammalian central nervous system, lesioned axons fail to regenerate. This failure to regenerate contrasts with the remarkable potential of axons to grow during embryonic development and after an injury in the peripheral nervous system. Peripheral sensory neurons with cell soma in dorsal root ganglia (DRG) switch to a regenerative state after nerve injury to enable axon regeneration and functional recovery. Decades of research have focused on the signaling pathways elicited by injury in sensory neurons and in Schwann cells that insulate axons as central mechanisms regulating nerve repair. However, neuronal microenvironment is far more complex and is composed of multiple cell types including endothelial, immune and glial cells. Whether the microenvironment surrounding neuronal soma contribute to the poor regenerative outcomes following central injuries remains largely unexplored. To answer this question, we performed a single cell transcriptional profiling of the DRG neuronal microenvironment response to peripheral and central injuries. In dissecting the roles of the microenvironment contribution, we have focused on a poorly studied population of Satellite Glial Cells (SGC) surrounding the neuronal cell soma. This study has uncovered a previously unknown role for SGC in nerve regeneration and defined SGC as transcriptionally distinct from Schwann cells while sharing similarities with astrocytes. Upon a peripheral injury, SGC contribute to axon regeneration via Fatty acid synthase (Fasn)-PPARα signaling pathway. Through repurposing fenofibrate, an FDA- approved PPARα agonist used for dyslipidemia treatment, we were able to rescue the impaired regeneration in mice lacking Fasn in SGC. Our analysis reveals that in response to central injuries, SGC do not activate the PPAR signaling pathway. However, induction of this pathway with fenofibrate treatment, rescued axon regeneration following an injury to the central nerves. Collectively, our results uncovered a previously unappreciated role of the neuronal microenvironment differential response in central and peripheral injuries.

SeminarNeuroscienceRecording

Molecular controls over corticospinal neuron axon branching at specific spinal segments

Yasuhiro Itoh
Harvard
Oct 27, 2020

Corticospinal neurons (CSN) are the cortical projection neurons that innervate the spinal cord and some brainstem targets with segmental precision to control voluntary movement of specific functional motor groups, limb sections, or individual digits, yet molecular regulation over CSN segmental target specificity is essentially unknown. CSN subpopulations exhibit striking axon targeting specificity from development into maturity: Evolutionarily newer rostrolateral CSN exclusively innervate bulbar-cervical targets (CSNBC-lat), while evolutionarily older caudomedial CSN (CSNmed) are more heterogeneous, with distinct subpopulations extending axons to either bulbar-cervical or thoraco-lumbar segments. The cervical cord, with its evolutionarily enhanced precision of forelimb movement, is innervated by multiple CSN subpopulations, suggesting inter-neuronal interactions in establishing corticospinal connectivity. I identify that Lumican, previously unrecognized in axon development, controls the specificity of cervical spinal cord innervation by CSN. Remarkably, Lumican, an extracellular matrix protein expressed by CSNBC-lat, non-cell-autonomously suppresses axon collateralization in the cervical cord by CSNmed. Intersectional viral labeling and mouse genetics further identify that Lumican controls axon collateralization by multiple subpopulations in caudomedial sensorimotor cortex. These results identify inter-axonal molecular crosstalk between CSN subpopulations as a novel mechanism controlling corticospinal connectivity and competitive specificity. Further, this mechanism has potential implications for evolutionary diversification of corticospinal circuitry with finer scale precision. "" Complementing this work, to comprehensively elucidate related axon projection mechanisms functioning at tips of growing CSN axons in vivo, I am currently applying experimental and analytic approaches recently developed in my postdoc lab (Poulopoulos*, Murphy*, Nature, 2019) to quantitatively and subcellularly “map” RNA and protein molecular machinery of subtype-specific growth cones, in parallel to their parent somata, isolated directly in vivo from developing subcerebral projection neurons (SCPN; the broader cortical output neuron population targeting both brainstem and spinal cord; includes CSN). I am investigating both normal development and GC-soma dysregulation with mutation of central CSN-SCPN transcriptional regulator Ctip2/Bcl11b.

SeminarPhysics of LifeRecording

Transcription regulates histone homeostasis

Kora-Lee Claude (Schmoller Lab)
Institute of Functional Epigenetics, Helmholtz, Germany
Sep 7, 2020
SeminarPhysics of LifeRecording

Cooperative binding of transcription factors is a hallmark of active enhancers

Srinivas Ramachandran
University of Colorado
Aug 11, 2020
SeminarNeuroscienceRecording

Interneuron desynchronization and breakdown of long-term place cell stability in temporal lobe epilepsy

Peyman Golshani
UCLA
Aug 4, 2020

Temporal lobe epilepsy is associated with memory deficits but the circuit mechanisms underlying these cognitive disabilities are not understood. We used electrophysiological recordings, open-source wire-free miniaturized microscopy and computational modeling to probe these deficits in a model of temporal lobe epilepsy. We find desynchronization of dentate gyrus interneurons with CA1 interneurons during theta oscillations and a loss of precision and stability of place fields. We also find that emergence of place cell dysfunction is delayed, providing a potential temporal window for treatments. Computation modeling shows that desynchronization rather than interneuron cell loss can drive place cell dysfunction. Future studies will uncover cell types driving these changes and transcriptional changes that may be driving dysfunction.

SeminarNeuroscienceRecording

CRISPR-based functional genomics in iPSC-based models of brain disease

Martin Kampmann
UCSF Department of Biochemistry and Biophysics
Jul 29, 2020

Human genes associated with brain-related diseases are being discovered at an accelerating pace. A major challenge is an identification of the mechanisms through which these genes act, and of potential therapeutic strategies. To elucidate such mechanisms in human cells, we established a CRISPR-based platform for genetic screening in human iPSC-derived neurons, astrocytes and microglia. Our approach relies on CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa), in which a catalytically dead version of the bacterial Cas9 protein recruits transcriptional repressors or activators, respectively, to endogenous genes to control their expression, as directed by a small guide RNA (sgRNA). Complex libraries of sgRNAs enable us to conduct genome-wide or focused loss-of-function and gain-of-function screens. Such screens uncover molecular players for phenotypes based on survival, stress resistance, fluorescent phenotypes, high-content imaging and single-cell RNA-Seq. To uncover disease mechanisms and therapeutic targets, we are conducting genetic modifier screens for disease-relevant cellular phenotypes in patient-derived neurons and glia with familial mutations and isogenic controls. In a genome-wide screen, we have uncovered genes that modulate the formation of disease-associated aggregates of tau in neurons with a tauopathy-linked mutation (MAPT V337M). CRISPRi/a can also be used to model and functionally evaluate disease-associated changes in gene expression, such as those caused by eQTLs, haploinsufficiency, or disease states of brain cells. We will discuss an application to Alzheimer’s Disease-associated genes in microglia.

SeminarPhysics of Life

Measuring transcription at a single gene copy reveals hidden drivers of bacterial individuality

Ido Golding
UIUC - Urbana-Champaign IL – USA
Jul 28, 2020

Single-cell measurements of mRNA copy numbers inform our understanding of stochastic gene expression, but these measurements coarse-grain over the individual copies of the gene, where transcription and its regulation take place stochastically. We recently combined single-molecule quantification of mRNA and gene loci to measure the transcriptional activity of an endogenous gene in individual Escherichia coli bacteria. When interpreted using a theoretical model for mRNA dynamics, the single-cell data allowed us to obtain the probabilistic rates of promoter switching, transcription initiation and elongation, mRNA release and degradation. Unexpectedly, we found that gene activity can be strongly coupled to the transcriptional state of another copy of the same gene present in the cell, and to the event of gene replication during the bacterial cell cycle. These gene-copy and cell-cycle correlations demonstrate the limits of mapping whole-cell mRNA numbers to the underlying stochastic gene activity and highlight the contribution of previously hidden variables to the observed population heterogeneity.

SeminarPhysics of LifeRecording

Chromatin transcription: cryo-EM structures of Pol II-nucleosome and nucleosome-CHD complexes

Lucas Farnung
Max Planck Institute for Biophysical Chemistry
Jul 28, 2020
SeminarNeuroscience

Potential involvement and target identification of HuR/ELAVL1 in age-related ocular pathologies – Back to the origin

Marialaura Amadio
University of Pavia
Jul 23, 2020

In the last decades, the post-transcriptional control of gene expression has become an area of intense investigation, delineating a complex scenario where several factors (e.g. RNA-binding proteins, coding and non-coding RNAs) orchestrate the fate of a given transcript. An intriguing hypothesis suggests that loss of RNA homeostasis is a central feature of many pathological states, including eye diseases. Since the elav (embryonic lethal, abnormal visual system) gene discovery in the Drosophila melanogaster, the mammalian ELAV-like family has confirmed its leading role in controlling the RNA metabolism (from splicing to translation) of genes with a key function in many physio-pathological contexts. Some relevant findings suggest the involvement of the HuR/ELAV-like1 member and its potential as a therapeutic target in age-related ocular pathologies.

SeminarNeuroscience

Epigenetic Reprogramming of Taste by Diet

Monica Dus
University of Michigan
Jul 19, 2020

Diets rich in sugar, salt, and fat alter taste perception and food intake, leading to obesity and metabolic disorders, but the molecular mechanisms through which this occurs are unknown. Here we show that in response to a high sugar diet, the epigenetic regulator Polycomb Repressive Complex 2.1 (PRC2.1) persistently reprograms the sensory neurons of D. melanogaster flies to reduce sweet sensation and promote obesity. In animals fed high sugar, the binding of PRC2.1 to the chromatin of the sweet gustatory neurons is redistributed to repress a developmental transcriptional network that modulates the responsiveness of these cells to sweet stimuli, reducing sweet sensation. Importantly, half of these transcriptional changes persist despite returning the animals to a control diet, causing a permanent decrease in sweet taste. Our results uncover a new epigenetic mechanism that, in response to the dietary environment, regulates neural plasticity and feeding behavior to promote obesity.

SeminarNeuroscience

Using evolutionary algorithms to explore single-cell heterogeneity and microcircuit operation in the hippocampus

Andrea Navas-Olive
Instituto Cajal CSIC
Jul 18, 2020

The hippocampus-entorhinal system is critical for learning and memory. Recent cutting-edge single-cell technologies from RNAseq to electrophysiology are disclosing a so far unrecognized heterogeneity within the major cell types (1). Surprisingly, massive high-throughput recordings of these very same cells identify low dimensional microcircuit dynamics (2,3). Reconciling both views is critical to understand how the brain operates. " "The CA1 region is considered high in the hierarchy of the entorhinal-hippocampal system. Traditionally viewed as a single layered structure, recent evidence has disclosed an exquisite laminar organization across deep and superficial pyramidal sublayers at the transcriptional, morphological and functional levels (1,4,5). Such a low-dimensional segregation may be driven by a combination of intrinsic, biophysical and microcircuit factors but mechanisms are unknown." "Here, we exploit evolutionary algorithms to address the effect of single-cell heterogeneity on CA1 pyramidal cell activity (6). First, we developed a biophysically realistic model of CA1 pyramidal cells using the Hodgkin-Huxley multi-compartment formalism in the Neuron+Python platform and the morphological database Neuromorpho.org. We adopted genetic algorithms (GA) to identify passive, active and synaptic conductances resulting in realistic electrophysiological behavior. We then used the generated models to explore the functional effect of intrinsic, synaptic and morphological heterogeneity during oscillatory activities. By combining results from all simulations in a logistic regression model we evaluated the effect of up/down-regulation of different factors. We found that muyltidimensional excitatory and inhibitory inputs interact with morphological and intrinsic factors to determine a low dimensional subset of output features (e.g. phase-locking preference) that matches non-fitted experimental data.

ePoster

Amyloid beta 1-42 and alpha-synuclein proteins: Effects on transcription factor expression

Pelin Sordu, Merve Alaylıoğlu, Zuhal Yurttaş, Tugay Çamoğlu, Büşra Şengül-Yediel, Ebru Keskin, Duygu Gezen-Ak, Erdinç Dursun

FENS Forum 2024

ePoster

Characterization of the transcriptional landscape of endogenous retroviruses at the fetal-maternal interface in a mouse model of autism spectrum disorder

Martina Giudice, Antonella Camaioni, Anna Maria Tartaglione, Vita Petrone, Claudia Matteucci, Gemma Calamandrei, Paola Sinibaldi-Vallebona, Laura Ricceri, Emanuela Balestrieri, Chiara Cipriani

FENS Forum 2024

ePoster

Decoding transcriptional regulation in response to sunlight in vertebrates: Circadian clocks and beyond

Alessandra Boiti, Yuhang Hong, Hongxiang Li, Rima Siauciunaite, Yi Bi, Daniela Vallone, Nicholas S. Foulkes

FENS Forum 2024

ePoster

Does volized mouse become more romantic? Transcriptional lability of brain oxytocin receptor (Oxtr) generates diversity in brain Oxtr distribution and social behaviors

Qi Zhang

FENS Forum 2024

ePoster

The emerging role of D4R in preventing morphine tolerance through the regulation of transcription factor expression in the dorsal horn

Marina Ponce, Belen Gago, Carolina Roza, Maria Angeles Real, Alicia Rivera

FENS Forum 2024

ePoster

Extracellular vesicles from hypothalamic astrocytes modify transcription factors of the leptin signaling pathway in proopiomelanocortin (POMC) neurons

Alfonso Gómez Romero, Roberto Collado-Pérez, María Jiménez-Hernáiz, J Argente, Julie Ann Chowen, Laura María Frago

FENS Forum 2024

ePoster

Functional and morphological characterization of zebrafish retinal ganglion cell subtypes expressing the transcription factor Satb2

Ayjan Urazbayeva, Fumi Kubo

FENS Forum 2024

ePoster

ID2-ETS2 axis regulates the transcriptional acquisition of pro-tumoral microglia phenotype in glioma

Guillermo Vázquez Cabrera, Noémie Roncier, Farah Real Oualit, Martin Škandík, Mireia Cruz De Los Santos, Austeja Baleviciute, Mathilde Cheray, Bertrand Joseph

FENS Forum 2024

ePoster

Interactions between amyloid beta 1-42 and nuclear transcription factors in mitochondria

Zuhal Yurttaş, Tugay Çamoğlu, Erdinç Dursun, Duygu Gezen Ak

FENS Forum 2024

ePoster

The knocking-down of the restrictive element 1-silencing transcription factor (REST) improves symptoms and limits motor neuron degeneration in a mouse model of amyotrophic lateral sclerosis

Natascia Guida, Valeria Valsecchi, Serenella Anzilotti, Ornella Cuomo, Luca Sanguigno, Pignataro Giuseppe, Lucio Annunziato, Luigi Formisano

FENS Forum 2024

ePoster

Neuronal ensembles of alcohol memories in the nucleus accumbens express a unique transcriptional fingerprint

Segev Barak

FENS Forum 2024

ePoster

Neuronal types in the mouse amygdala and their transcriptional states in fear memory

Hannah Hochgerner, Shelly Singh, Muhammad Tibi, Zhige Lin, Niv Skarbianskis, Inbal Admati, Osnat Ophir, Nuphar Reinhardt, Shai Netser, Shlomo Wagner, Amit Zeisel

FENS Forum 2024

ePoster

Post-transcriptional regulation of neurodevelopment mediated by extracellular vesicles

Barbara Oliveira, Satish Arcot Jayaram, Walter Kaufmann, Armel Nicolas, Daniel Malzl, Jeorg Menche, Gaia Novarino

FENS Forum 2024

ePoster

Regulation of repressor-element 1 silencing transcription factor (REST) by CaMKIV

Hanako Tsushima, Anna Rocchi, Corradi Beatrice, Laura Gennaccaro, Nara Liessi, Luca Maragliano, Andrea Armirotti, Anna Fassio, Fabio Benfenati

FENS Forum 2024

ePoster

Role of NCOR1 and NCOR2 transcriptional corepressors in myelin development and remyelination

Rubí Hernández Rojas, Ángeles Casillas-Bajo, Alerie Guzman de la Fuente, Jose A. Gómez-Sáchez, Hugo Cabedo

FENS Forum 2024

ePoster

The role of TCF7L2 transcription factor in the function of thalamocortical circuits

Katarzyna Hryniewiecka, Magdalena Majkowska, Ewa Kublik, Joanna Urban-Ciećko, Marta Wiśniewska

FENS Forum 2024

ePoster

The role of the transcription coactivator CRTC1 in neuroinflammation and depression

Irmak Çabas, Laurent Fumeaux, Clara Rossetti, Jean-René Cardinaux

FENS Forum 2024

ePoster

Spatial transcriptomics-correlated electron microscopy integrates transcriptional and ultrastructural responses to brain injury

Peter Androvic, Martina Schifferer, Katrin Perez Anderson, Ludovico Cantuti-Castelvetri, Hanyi Jiang, Hao Ji, Lu Liu, Garyfallia Gouna, Stefan Berghoff, Simon Besson-Girard, Johanna Knoferle, Mikael Simons, Ozgun Gokce

FENS Forum 2024

ePoster

Transcriptional changes in the prefrontal cortex are associated with cognitive impairment in an experimental mouse model of multiple sclerosis

Maria Concetta Geloso, Annalisa Adinolfi, Luca Zupo, Marika Guerra, Marco Pieraccioli, Francesco Ria, Eleonora Cesari, Valentina Corvino, Gabriele Di Sante, Claudio Sette

FENS Forum 2024

ePoster

Transcriptional co-development in human iPSC-derived astrocytes and neurons

Maurits Unkel, Bas Lendemeijer, Hilde Smeenk, Erik Bindels, Witte Hoogendijk, Femke de Vrij, Steven Kushner

FENS Forum 2024

ePoster

Transcriptional response of primary hippocampal neurons following exposure to radiofrequency electromagnetic fields

Ibtissam Echchgadda, Jody Cantu, Joseph Butterworth, Jason Payne

FENS Forum 2024

ePoster

Transcriptional coactivators shuttle between neuronal identity and activity-driven regulatory regions during neuronal activation

Sergio Niñerola, Beatriz del Blanco, Mirjam Cangonja, Juan Paraíso-Luna, Marta Alaiz-Noya, Angel Barco

FENS Forum 2024

ePoster

Visualizing the transcriptional landscape with tissue context

Nathalie Agudelo Duenas, Julia Lyudchik, Liana Mukhametshina, Mobina Pournemat, Caroline Kreuzinger, Mojtaba R. Tavakoli, Giulio Abagnale, Julia M. Michalska, Christoph Sommer, Johann G. Danzl

FENS Forum 2024

ePoster

Web-based speech transcription tool for efficient quantification of memory performance

Marina Galanina, Kucewicz Michal Tomasz, Jesus Salvador Garcia-Salinas, Sathwik Prathapagiri, Nastaran Hamedi, Maria Renke

FENS Forum 2024