Topic spotlight
TopicWorld Wide

TRN

Discover seminars, jobs, and research tagged with TRN across World Wide.
2 curated items2 Seminars
Updated over 3 years ago
2 items · TRN
2 results
SeminarNeuroscience

Epigenome regulation in neocortex expansion and generation of neuronal subtypes

Tran Tuoc, PhD
Ruhruniversität-Bochum, Humangenetik
Aug 23, 2022

Evolutionarily, the expansion of the human neocortex accounts for many of the unique cognitive abilities of humans. This expansion appears to reflect the increased proliferative potential of basal progenitors (BPs) in mammalian evolution. Further cortical progenitors generate both glutamatergic excitatory neurons (ENs) and GABAergic inhibitory interneurons (INs) in human cortex, whereas they produce exclusively ENs in rodents. The increased proliferative capacity and neuronal subtype generation of cortical progenitors in mammalian evolution may have evolved through epigenetic alterations. However, whether or how the epigenome in cortical progenitors differs between humans and other species is unknown. Here, we report that histone H3 acetylation is a key epigenetic regulation in BP profiling of sorted BPs, we show that H3K9 acetylation is low in murine BPs and high in amplification, neuronal subtype generation and cortical expansion. Through epigenetic profiling of sorted BPs, we show that H3K9 acetylation is low in murine BPs and high in human BPs. Elevated H3K9ac preferentially increases BP proliferation, increasing the size and folding of the normally smooth mouse neocortex. Furthermore, we found that the elevated H3 acetylation activates expression of IN genes in in developing mouse cortex and promote proliferation of IN progenitor-like cells in cortex of Pax6 mutant mouse models. Mechanistically, H3K9ac drives the BP amplification and proliferation of these IN progenitor-like cells by increasing expression of the evolutionarily regulated gene, TRNP1. Our findings demonstrate a previously unknown mechanism that controls neocortex expansion and generation of neuronal subtypes. Keywords: Cortical development, neurogenesis, basal progenitors, cortical size, gyrification, excitatory neuron, inhibitory interneuron, epigenetic profiling, epigenetic regulation, H3 acetylation, H3K9ac, TRNP1, PAX6

SeminarNeuroscienceRecording

Thalamic reticular nucleus dysfunction in neurodevelopmental disorders

Guoping Feng
MIT Dept. of Brain and Cognitive Sciences
May 13, 2020

The thalamic reticular nucleus (TRN), the major source of thalamic inhibition, is known to regulate thalamocortical interactions critical for sensory processing, attention and cognition. TRN dysfunction has been linked to sensory abnormality, attention deficit and sleep disturbance across multiple neurodevelopmental disorders. Currently, little is known about the organizational principles underlying its divergent functions. In this talk, I will start with an example of how dysfunction of TRN contributes to attention deficit and sleep disruption using a mouse model of Ptchd1 mutation, which in humans cause neurodevelopmental disorder with ASD. Building on these findings, we further performed an integrative single-cell analysis linking molecular and electrophysiological features of the TRN to connectivity and systems-level function. We identified two subnetworks of the TRN with segregated anatomical structure, distinct electrophysiological properties, differential connections to the functionally distinct first-order and higher-order thalamic nuclei, and differential role in regulating sleep. These studies provide a comprehensive atlas for TRN neurons at the single-cell resolution and a foundation for studying diverse functions and dysfunctions of the TRN. Finally, I will describe the newly developed minimally invasive optogenetic tool for probing circuit function and dysfunction.