Unexpected Events
unexpected events
Learning from unexpected events in the neocortical microcircuit
Predictive learning hypotheses posit that the neocortex learns a hierarchical model of the structure of features in the environment. Under these hypotheses, expected or predictable features are differentiated from unexpected ones by comparing bottom-up and top-down streams of data, with unexpected features then driving changes in the representation of incoming stimuli. This is supported by numerous studies in early sensory cortices showing that pyramidal neurons respond particularly strongly to unexpected stimulus events. However, it remains unknown how their responses govern subsequent changes in stimulus representations, and thus, govern learning. Here, I present results from our study of layer 2/3 and layer 5 pyramidal neurons imaged in primary visual cortex of awake, behaving mice using two-photon calcium microscopy at both the somatic and distal apical planes. Our data reveals that individual neurons and distal apical dendrites show distinct, but predictable changes in unexpected event responses when tracked over several days. Considering existing evidence that bottom-up information is primarily targeted to somata, with distal apical dendrites receiving the bulk of top-down inputs, our findings corroborate hypothesized complementary roles for these two neuronal compartments in hierarchical computing. Altogether, our work provides novel evidence that the neocortex indeed instantiates a predictive hierarchical model in which unexpected events drive learning.
Active sleep in flies: the dawn of consciousness
The brain is a prediction machine. Yet the world is never entirely predictable, for any animal. Unexpected events are surprising and this typically evokes prediction error signatures in animal brains. In humans such mismatched expectations are often associated with an emotional response as well. Appropriate emotional responses are understood to be important for memory consolidation, suggesting that valence cues more generally constitute an ancient mechanism designed to potently refine and generalize internal models of the world and thereby minimize prediction errors. On the other hand, abolishing error detection and surprise entirely is probably also maladaptive, as this might undermine the very mechanism that brains use to become better prediction machines. This paradoxical view of brain functions as an ongoing tug-of-war between prediction and surprise suggests a compelling new way to study and understand the evolution of consciousness in animals. I will present approaches to studying attention and prediction in the tiny brain of the fruit fly, Drosophila melanogaster. I will discuss how an ‘active’ sleep stage (termed rapid eye movement – REM – sleep in mammals) may have evolved in the first animal brains as a mechanism for optimizing prediction in motile creatures confronted with constantly changing environments. A role for REM sleep in emotional regulation could thus be better understood as an ancient sleep function that evolved alongside selective attention to maintain an adaptive balance between prediction and surprise. This view of active sleep has some interesting implications for the evolution of subjective awareness and consciousness.