← Back

Visual Ecology

Topic spotlight
TopicWorld Wide

visual ecology

Discover seminars, jobs, and research tagged with visual ecology across World Wide.
3 curated items2 Seminars1 Position
Updated 2 days ago
3 items · visual ecology
3 results
Position

Thomas Euler

Centre for Integrative Neuroscience (CIN) / Centre for Ophthalmology, University of Tübingen
Tübingen
Dec 5, 2025

Two PhD positions as part of interdisciplinary collaborations are available in Laura Busse’s lab at the Faculty of Biology of the LMU Munich and Thomas Euler’s lab at the Center for Integrative Neuroscience in Tübingen. The fully funded positions are part of the DFG-funded Collaborative Research Center Robust vision: Inference Principles and neural mechanisms. In the project, we will explore the visual input received by the mouse visual system under natural conditions and study how such input is processed along key stages of the early visual system. The project continues from Qiu et al. (2020) and will include opportunities for performing recordings of the visual input encountered by freely behaving mice under naturalistic conditions, statistical analysis of the recorded video material, quantitative assessment of behavior, and measurements (2P calcium imaging / electrophysiology) of neural responses from mouse retina, visual thalamus and primary visual cortex in response to naturalistic movies. The project requires a combination of experimental skills and interest in engineering and programming. Since the project will be conducted in a collaborative, interdisciplinary setting and within a geographically distributed team, the candidate show have good capacity and value for teamwork and communication skills. One of the positions will be place in Thomas Euler’s lab (U Tuebingen) with a focus on retinal aspects of the project. A complementary PhD position in Laura Busse’s lab (LMU Munich), with a focus on central vision aspects, will closely collaborate on the development of the recording hardware and the software framework for data analysis and modelling. Both positions offer a thriving scientific environment, structured PhD programs and numerous opportunities for networking and exchange. Interested candidates are welcome to establish contact via email to thomas.euler@cin.uni-tuebingen.de and busse@bio.lmu.de. More information about the labs can be found here https://eulerlab.de/ and https://visioncircuitslab.org/ For applications to Thomas Euler’s position within the project, see further instructions on the lab’s webpage (https://eulerlab.de/positions/). For applications to Laura Busse’s position within the project, please visit the LMU Graduate School of Systemic Neuroscience (GSN, http://www.gsn.uni-muenchen.de/index.html).

SeminarNeuroscienceRecording

Predator-prey interactions: the avian visual sensory perspective

Esteban Fernandez
Purdue University
Oct 3, 2021

My research interests are centered on animal ecology, and more specifically include the following areas: visual ecology, behavioral ecology, and conservation biology, as well as the interactions between them. My research is question-driven. I answer my questions in a comprehensive manner, using a combination of empirical, theoretical, and comparative approaches. My model species are usually birds, but I have also worked with fish, mammals, amphibians, and insects. ​I was fortunate to enrich my education by attending Universities in different parts of the world. I did my undergraduate, specialized in ecology and biodiversity, at the "Universidad Nacional de Cordoba", Argentina. My Ph.D. was in animal ecology and conservation biology at the "Universidad Complutense de Madrid", Spain. My two post-docs were focused on behavioral ecology; the first one at University of Oxford (United Kingdom), and the second one at University of Minnesota (USA). I was an Assistant Professor at California State University Long Beach for almost six years. I am now a Full Professor of Biological Sciences at Purdue University.

SeminarNeuroscienceRecording

How our biases may influence our study of visual modalities: Two tales from the sea

Sönke Johnsen
Duke University
Mar 14, 2021

It has long been appreciated (and celebrated) that certain species have sensory capabilities that humans do not share, for example polarization, ultraviolet, and infrared vision. What is less appreciated however, is that our position as terrestrial human scientists can significantly affect our study of animal senses and signals, even within modalities that we do share. For example, our acute vision can lead us to over-interpret the relevance of fine patterns in animals with coarser vision, and our Cartesian heritage as scientists can lead us to divide sensory modalities into orthogonal parameters (e.g. hue and brightness for color vision), even though this division may not exist within the animal itself. This talk examines two cases from marine visual ecology where a reconsideration of our biases as sharp-eyed Cartesian land mammals can help address questions in visual ecology. The first case examines the enormous variation in visual acuity among animals with image-forming eyes, and focuses on how acknowledging the typically poorer resolving power of animals can help us interpret the function of color patterns in cleaner shrimp and their client fish. The second case examines the how the typical human division of polarized light stimuli into angle and degree of polarization is problematic, and how a physiologically relevant interpretation is both closer to the truth and resolves a number of issues, particularly when considering the propagation of polarized light