Word Embedding
word embedding
Analogical Reasoning with Neuro-Symbolic AI
Knowledge discovery with computers requires a huge amount of search. Analogical reasoning is effective for efficient knowledge discovery. Therefore, we proposed analogical reasoning systems based on first-order predicate logic using Neuro-Symbolic AI. Neuro-Symbolic AI is a combination of Symbolic AI and artificial neural networks and has features that are easy for human interpretation and robust against data ambiguity and errors. We have implemented analogical reasoning systems by Neuro-symbolic AI models with word embedding which can represent similarity between words. Using the proposed systems, we efficiently extracted unknown rules from knowledge bases described in Prolog. The proposed method is the first case of analogical reasoning based on the first-order predicate logic using deep learning.
Probabilistic Analogical Mapping with Semantic Relation Networks
Hongjing Lu will present a new computational model of Probabilistic Analogical Mapping (PAM, in collaboration with Nick Ichien and Keith Holyoak) that finds systematic correspondences between inputs generated by machine learning. The model adopts a Bayesian framework for probabilistic graph matching, operating on semantic relation networks constructed from distributed representations of individual concepts (word embeddings created by Word2vec) and of relations between concepts (created by our BART model). We have used PAM to simulate a broad range of phenomena involving analogical mapping by both adults and children. Our approach demonstrates that human-like analogical mapping can emerge from comparison mechanisms applied to rich semantic representations of individual concepts and relations. More details can be found https://arxiv.org/ftp/arxiv/papers/2103/2103.16704.pdf