Neural Networks
neural networks
Latest
Fabrice Auzanneau
The PhD student will be part of the ANR project 'REFINED' involving the Laboratory of Embedded Artificial Intelligence in CEA List in Paris, the Multispeech research team In LORIA, Nancy, and the Hearing Institute in Paris. The project aims at studying new Deep Learning based methods to improve hearing acuity of ANSD patients. A cohort of ANSD volunteers will be tested to identify spectro-temporal auditory and extra-auditory cues correlated with the speech perception. Additionally, the benefits of neural networks will be studied. However, current artificial intelligence methods are too complex to be applied to processors with low computing and memory capacities: compression and optimization methods are needed.
Dr. Robert Legenstein
For the recently established Cluster of Excellence CoE Bilateral Artificial Intelligence (BILAI), funded by the Austrian Science Fund (FWF), we are looking for more than 50 PhD students and 10 Post-Doc researchers (m/f/d) to join our team at one of the six leading research institutions across Austria. In BILAI, major Austrian players in Artificial Intelligence (AI) are teaming up to work towards Broad AI. As opposed to Narrow AI, which is characterized by task-specific skills, Broad AI seeks to address a wide array of problems, rather than being limited to a single task or domain. To develop its foundations, BILAI employs a Bilateral AI approach, effectively combining sub-symbolic AI (neural networks and machine learning) with symbolic AI (logic, knowledge representation, and reasoning) in various ways. Harnessing the full potential of both symbolic and sub-symbolic approaches can open new avenues for AI, enhancing its ability to solve novel problems, adapt to diverse environments, improve reasoning skills, and increase efficiency in computation and data use. These key features enable a broad range of applications for Broad AI, from drug development and medicine to planning and scheduling, autonomous traffic management, and recommendation systems. Prioritizing fairness, transparency, and explainability, the development of Broad AI is crucial for addressing ethical concerns and ensuring a positive impact on society. The research team is committed to cross-disciplinary work in order to provide theory and models for future AI and deployment to applications.
Mathematical and computational modelling of ocular hemodynamics: from theory to applications
Changes in ocular hemodynamics may be indicative of pathological conditions in the eye (e.g. glaucoma, age-related macular degeneration), but also elsewhere in the body (e.g. systemic hypertension, diabetes, neurodegenerative disorders). Thanks to its transparent fluids and structures that allow the light to go through, the eye offers a unique window on the circulation from large to small vessels, and from arteries to veins. Deciphering the causes that lead to changes in ocular hemodynamics in a specific individual could help prevent vision loss as well as aid in the diagnosis and management of diseases beyond the eye. In this talk, we will discuss how mathematical and computational modelling can help in this regard. We will focus on two main factors, namely blood pressure (BP), which drives the blood flow through the vessels, and intraocular pressure (IOP), which compresses the vessels and may impede the flow. Mechanism-driven models translates fundamental principles of physics and physiology into computable equations that allow for identification of cause-to-effect relationships among interplaying factors (e.g. BP, IOP, blood flow). While invaluable for causality, mechanism-driven models are often based on simplifying assumptions to make them tractable for analysis and simulation; however, this often brings into question their relevance beyond theoretical explorations. Data-driven models offer a natural remedy to address these short-comings. Data-driven methods may be supervised (based on labelled training data) or unsupervised (clustering and other data analytics) and they include models based on statistics, machine learning, deep learning and neural networks. Data-driven models naturally thrive on large datasets, making them scalable to a plethora of applications. While invaluable for scalability, data-driven models are often perceived as black- boxes, as their outcomes are difficult to explain in terms of fundamental principles of physics and physiology and this limits the delivery of actionable insights. The combination of mechanism-driven and data-driven models allows us to harness the advantages of both, as mechanism-driven models excel at interpretability but suffer from a lack of scalability, while data-driven models are excellent at scale but suffer in terms of generalizability and insights for hypothesis generation. This combined, integrative approach represents the pillar of the interdisciplinary approach to data science that will be discussed in this talk, with application to ocular hemodynamics and specific examples in glaucoma research.
Deep learning applications in ophthalmology
Deep learning techniques have revolutionized the field of image analysis and played a disruptive role in the ability to quickly and efficiently train image analysis models that perform as well as human beings. This talk will cover the beginnings of the application of deep learning in the field of ophthalmology and vision science, and cover a variety of applications of using deep learning as a method for scientific discovery and latent associations.
neural networks coverage
4 items