Latest

PositionComputational Neuroscience

Prof Georges Debrégeas

Sorbonne Université
Paris, France
Jan 4, 2026

Zebrafish larva possesses a combination of assets – small dimensions, brain transparency, genetic tractability – which makes it a unique vertebrate model system to probe brain-scale neuronal dynamics. Using light-sheet microscopy, it is currently possible to monitor the activity of the entire brain at cellular resolution using functional calcium imaging, at about 1 full brain/second. The student will harness this unique opportunity to dissect the neural computation at play during sensory-driven navigation. 5-7 days old larvae will be partially restrained in agarose, i.e. with their tail free. Real-time video-monitoring of the tail beats will be used to infer virtual navigational parameters (displacement, reorientation); visual or thermal stimuli will be delivered to the larvae in a manner that will simulate a realistic navigation along light or thermal gradients. During this virtual sensory-driven navigation, the brain activity will be monitored using two-photon light-sheet functional imaging. These experiments will provide rich datasets of whole-brain activity during a complex sensorimotor task. The network dynamics will be analysed in order to extract a finite number of brain states associated with various motor programs. Starting from spontaneous navigation phases (i.e. absence of varying sensory cues), the student will analyse how different sensory cues interfere with the network endogenous dynamics to bias the probability of these different brain states and eventually favor movements along sensory gradients. For more information see: https://www.smartnets-etn.eu/whole-brain-network-dynamics-in-zebrafish-larvae-during-spontaneous-and-sensory-driven-virtual-navigation/

Virtual Reality coverage

1 items

Position1
Domain spotlight

Explore how Virtual Reality research is advancing inside Comp Neuro.

Visit domain