7T fMRI
Latest
Trends in NeuroAI - Meta's MEG-to-image reconstruction
Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri). This will be an informal journal club presentation, we do not have an author of the paper joining us. Title: Brain decoding: toward real-time reconstruction of visual perception Abstract: In the past five years, the use of generative and foundational AI systems has greatly improved the decoding of brain activity. Visual perception, in particular, can now be decoded from functional Magnetic Resonance Imaging (fMRI) with remarkable fidelity. This neuroimaging technique, however, suffers from a limited temporal resolution (≈0.5 Hz) and thus fundamentally constrains its real-time usage. Here, we propose an alternative approach based on magnetoencephalography (MEG), a neuroimaging device capable of measuring brain activity with high temporal resolution (≈5,000 Hz). For this, we develop an MEG decoding model trained with both contrastive and regression objectives and consisting of three modules: i) pretrained embeddings obtained from the image, ii) an MEG module trained end-to-end and iii) a pretrained image generator. Our results are threefold: Firstly, our MEG decoder shows a 7X improvement of image-retrieval over classic linear decoders. Second, late brain responses to images are best decoded with DINOv2, a recent foundational image model. Third, image retrievals and generations both suggest that MEG signals primarily contain high-level visual features, whereas the same approach applied to 7T fMRI also recovers low-level features. Overall, these results provide an important step towards the decoding - in real time - of the visual processes continuously unfolding within the human brain. Speaker: Dr. Paul Scotti (Stability AI, MedARC) Paper link: https://arxiv.org/abs/2310.19812
A vision of numerical cognition
It’s All About Motion: Functional organization of the multisensory motion system at 7T
The human middle temporal complex (hMT+) has a crucial biological relevance for the processing and detection of direction and speed of motion in visual stimuli. In both humans and monkeys, it has been extensively investigated in terms of its retinotopic properties and selectivity for direction of moving stimuli; however, only in recent years there has been an increasing interest in how neurons in MT encode the speed of motion. In this talk, I will explore the proposed mechanism of speed encoding questioning whether hMT+ neuronal populations encode the stimulus speed directly, or whether they separate motion into its spatial and temporal components. I will characterize how neuronal populations in hMT+ encode the speed of moving visual stimuli using electrocorticography ECoG and 7T fMRI. I will illustrate that the neuronal populations measured in hMT+ are not directly tuned to stimulus speed, but instead encode speed through separate and independent spatial and temporal frequency tuning. Finally, I will suggest that this mechanism may play a role in evaluating multisensory responses for visual, tactile and auditory stimuli in hMT+.
Hierarchical transformation of visual event timing representations in the human brain: response dynamics in early visual cortex and timing-tuned responses in association cortices
Quantifying the timing (duration and frequency) of brief visual events is vital to human perception, multisensory integration and action planning. For example, this allows us to follow and interact with the precise timing of speech and sports. Here we investigate how visual event timing is represented and transformed across the brain’s hierarchy: from sensory processing areas, through multisensory integration areas, to frontal action planning areas. We hypothesized that the dynamics of neural responses to sensory events in sensory processing areas allows derivation of event timing representations. This would allow higher-level processes such as multisensory integration and action planning to use sensory timing information, without the need for specialized central pacemakers or processes. Using 7T fMRI and neural model-based analyses, we found responses that monotonically increase in amplitude with visual event duration and frequency, becoming increasingly clear from primary visual cortex to lateral occipital visual field maps. Beginning in area MT/V5, we found a gradual transition from monotonic to tuned responses, with response amplitudes peaking at different event timings in different recording sites. While monotonic response components were limited to the retinotopic location of the visual stimulus, timing-tuned response components were independent of the recording sites' preferred visual field positions. These tuned responses formed a network of topographically organized timing maps in superior parietal, postcentral and frontal areas. From anterior to posterior timing maps, multiple events were increasingly integrated, response selectivity narrowed, and responses focused increasingly on the middle of the presented timing range. These results suggest that responses to event timing are transformed from the human brain’s sensory areas to the association cortices, with the event’s temporal properties being increasingly abstracted from the response dynamics and locations of early sensory processing. The resulting abstracted representation of event timing is then propagated through areas implicated in multisensory integration and action planning.
7T fMRI coverage
4 items